Both Text and Images Leaked! A Systematic Analysis of Multimodal LLM Data Contamination
- URL: http://arxiv.org/abs/2411.03823v2
- Date: Mon, 17 Feb 2025 18:29:13 GMT
- Title: Both Text and Images Leaked! A Systematic Analysis of Multimodal LLM Data Contamination
- Authors: Dingjie Song, Sicheng Lai, Shunian Chen, Lichao Sun, Benyou Wang,
- Abstract summary: multimodal large language models (MLLMs) have demonstrated superior performance on various multimodal benchmarks.<n>The issue of data contamination during training creates challenges in performance evaluation and comparison.<n>We introduce a multimodal data contamination detection framework, MM-Detect, designed for MLLMs.
- Score: 18.586654412992168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid progression of multimodal large language models (MLLMs) has demonstrated superior performance on various multimodal benchmarks. However, the issue of data contamination during training creates challenges in performance evaluation and comparison. While numerous methods exist for detecting models' contamination in large language models (LLMs), they are less effective for MLLMs due to their various modalities and multiple training phases. In this study, we introduce a multimodal data contamination detection framework, MM-Detect, designed for MLLMs. Our experimental results indicate that MM-Detect is quite effective and sensitive in identifying varying degrees of contamination, and can highlight significant performance improvements due to the leakage of multimodal benchmark training sets. Furthermore, we explore whether the contamination originates from the base LLMs used by MLLMs or the multimodal training phase, providing new insights into the stages at which contamination may be introduced.
Related papers
- Exploring and Evaluating Multimodal Knowledge Reasoning Consistency of Multimodal Large Language Models [52.569132872560814]
multimodal large language models (MLLMs) have achieved significant breakthroughs, enhancing understanding across text and vision.
However, current MLLMs still face challenges in effectively integrating knowledge across these modalities during multimodal knowledge reasoning.
We analyze and compare the extent of consistency degradation in multimodal knowledge reasoning within MLLMs.
arXiv Detail & Related papers (2025-03-03T09:01:51Z) - Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
Large Language Models (LLMs) have been extensively applied in time series analysis.
Yet, their utility in the few-shot classification (i.e., a crucial training scenario) is underexplored.
We aim to leverage the extensive pre-trained knowledge in LLMs to overcome the data scarcity problem.
arXiv Detail & Related papers (2025-01-30T03:59:59Z) - Exploring Large Language Models for Multimodal Sentiment Analysis: Challenges, Benchmarks, and Future Directions [0.0]
Multimodal Aspect-Based Sentiment Analysis (MABSA) aims to extract aspect terms and their corresponding sentiment polarities from multimodal information, including text and images.
Traditional supervised learning methods have shown effectiveness in this task, but the adaptability of large language models (LLMs) to MABSA remains uncertain.
Recent advances in LLMs, such as Llama2, LLaVA, and ChatGPT, demonstrate strong capabilities in general tasks, yet their performance in complex and fine-grained scenarios like MABSA is underexplored.
arXiv Detail & Related papers (2024-11-23T02:17:10Z) - FedMLLM: Federated Fine-tuning MLLM on Multimodal Heterogeneity Data [64.50893177169996]
Fine-tuning Multimodal Large Language Models (MLLMs) with Federated Learning (FL) allows for expanding the training data scope by including private data sources.
We introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios.
We develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies.
arXiv Detail & Related papers (2024-11-22T04:09:23Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
Large language models (LLMs) generate content that can undermine trust in online discourse.
Current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-AI collaboration.
To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content.
arXiv Detail & Related papers (2024-10-18T08:14:10Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - Towards Data Contamination Detection for Modern Large Language Models: Limitations, Inconsistencies, and Oracle Challenges [3.0455427910850785]
We evaluate five contamination detection approaches with four state-of-the-art LLMs across eight challenging datasets.
Our analysis reveals that current methods have non-trivial limitations in their assumptions and practical applications.
arXiv Detail & Related papers (2024-09-16T02:04:33Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective [53.48484062444108]
We find that the development of models and data is not two separate paths but rather interconnected.
On the one hand, vaster and higher-quality data contribute to better performance of MLLMs; on the other hand, MLLMs can facilitate the development of data.
To promote the data-model co-development for MLLM community, we systematically review existing works related to MLLMs from the data-model co-development perspective.
arXiv Detail & Related papers (2024-07-11T15:08:11Z) - A Comprehensive Survey of Contamination Detection Methods in Large Language Models [68.10605098856087]
With the rise of Large Language Models (LLMs) in recent years, abundant new opportunities are emerging, but also new challenges.
LLMs' performance may not be reliable anymore, as the high performance may be at least partly due to their previous exposure to the data.
This limitation jeopardizes real capability improvement in the field of NLP, yet there remains a lack of methods on how to efficiently detect contamination.
arXiv Detail & Related papers (2024-03-31T14:32:02Z) - GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data [3.08543976986593]
Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks.
This paper outlines and validates GenCeption, a novel, annotation-free evaluation method.
It requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs' tendency to hallucinate.
arXiv Detail & Related papers (2024-02-22T21:22:04Z) - OPDAI at SemEval-2024 Task 6: Small LLMs can Accelerate Hallucination
Detection with Weakly Supervised Data [1.3981625092173873]
This paper describes a unified system for hallucination detection of LLMs.
It wins the second prize in the model-agnostic track of the SemEval-2024 Task 6.
arXiv Detail & Related papers (2024-02-20T11:01:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.