Performance evaluation of SLAM-ASR: The Good, the Bad, the Ugly, and the Way Forward
- URL: http://arxiv.org/abs/2411.03866v2
- Date: Wed, 22 Jan 2025 09:48:34 GMT
- Title: Performance evaluation of SLAM-ASR: The Good, the Bad, the Ugly, and the Way Forward
- Authors: Shashi Kumar, Iuliia Thorbecke, Sergio Burdisso, Esaú Villatoro-Tello, Manjunath K E, Kadri Hacioğlu, Pradeep Rangappa, Petr Motlicek, Aravind Ganapathiraju, Andreas Stolcke,
- Abstract summary: Recent research has demonstrated that training a linear connector between speech foundation encoders and large language models (LLMs) enables this architecture to achieve strong ASR capabilities.
Despite the impressive results, it remains unclear whether these simple approaches are robust enough across different scenarios and speech conditions.
We present novel empirical findings that offer insights on how to effectively utilize the SLAM-ASR architecture.
- Score: 10.914414815406275
- License:
- Abstract: Recent research has demonstrated that training a linear connector between speech foundation encoders and large language models (LLMs) enables this architecture to achieve strong ASR capabilities. Despite the impressive results, it remains unclear whether these simple approaches are robust enough across different scenarios and speech conditions, such as domain shifts and speech perturbations. In this paper, we address these questions by conducting various ablation experiments using a recent and widely adopted approach called SLAM-ASR. We present novel empirical findings that offer insights on how to effectively utilize the SLAM-ASR architecture across a wide range of settings. Our main findings indicate that SLAM-ASR exhibits poor performance in cross-domain evaluation settings. Additionally, speech perturbations on in-domain data, such as changes in speech rate or additive noise, can significantly degrade performance. Our findings offer critical insights for fine-tuning and configuring robust LLM-based ASR models, tailored to different data characteristics and computational resources.
Related papers
- Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity [61.48338027901318]
We show that fine-tuning with LLM-generated data improves target task performance and reduces out-of-domain degradation.
This is the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - SAMBO-RL: Shifts-aware Model-based Offline Reinforcement Learning [9.88109749688605]
Model-based offline reinforcement learning trains policies using pre-collected datasets and learned environment models.
This paper offers a comprehensive analysis that disentangles the problem into two fundamental components: model bias and policy shift.
We introduce Shifts-aware Model-based Offline Reinforcement Learning (SAMBO-RL), a practical framework that efficiently trains classifiers to approximate SAR for policy optimization.
arXiv Detail & Related papers (2024-08-23T04:25:09Z) - Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks [0.0]
Relation Extraction (RE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs)
Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area.
This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach.
arXiv Detail & Related papers (2024-06-20T21:27:57Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
Large Language Models (LLMs) have the capability to understand and generate human-like text from input queries.
This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines.
We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding.
arXiv Detail & Related papers (2024-06-17T04:35:17Z) - Enhancing Noise Robustness of Retrieval-Augmented Language Models with Adaptive Adversarial Training [39.21885486667879]
Large Language Models (LLMs) exhibit substantial capabilities yet encounter challenges, including hallucination, outdated knowledge, and untraceable reasoning processes.
Retrieval-augmented generation (RAG) has emerged as a promising solution, integrating knowledge from external databases to mitigate these challenges.
We propose a novel RAG approach known as Retrieval-augmented Adaptive Adrial Training (RAAT)
arXiv Detail & Related papers (2024-05-31T16:24:53Z) - Crossmodal ASR Error Correction with Discrete Speech Units [16.58209270191005]
We propose a post-ASR processing approach for ASR Error Correction (AEC)
We explore pre-training and fine-tuning strategies and uncover an ASR domain discrepancy phenomenon.
We propose the incorporation of discrete speech units to align with and enhance the word embeddings for improving AEC quality.
arXiv Detail & Related papers (2024-05-26T19:58:38Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - ASR: Attention-alike Structural Re-parameterization [53.019657810468026]
We propose a simple-yet-effective attention-alike structural re- parameterization (ASR) that allows us to achieve SRP for a given network while enjoying the effectiveness of the attention mechanism.
In this paper, we conduct extensive experiments from a statistical perspective and discover an interesting phenomenon Stripe Observation, which reveals that channel attention values quickly approach some constant vectors during training.
arXiv Detail & Related papers (2023-04-13T08:52:34Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.