Energy Score-based Pseudo-Label Filtering and Adaptive Loss for Imbalanced Semi-supervised SAR target recognition
- URL: http://arxiv.org/abs/2411.03959v1
- Date: Wed, 06 Nov 2024 14:45:16 GMT
- Title: Energy Score-based Pseudo-Label Filtering and Adaptive Loss for Imbalanced Semi-supervised SAR target recognition
- Authors: Xinzheng Zhang, Yuqing Luo, Guopeng Li,
- Abstract summary: Existing semi-supervised SAR ATR algorithms show low recognition accuracy in the case of class imbalance.
This work offers a non-balanced semi-supervised SAR target recognition approach using dynamic energy scores and adaptive loss.
- Score: 1.2035771704626825
- License:
- Abstract: Automatic target recognition (ATR) is an important use case for synthetic aperture radar (SAR) image interpretation. Recent years have seen significant advancements in SAR ATR technology based on semi-supervised learning. However, existing semi-supervised SAR ATR algorithms show low recognition accuracy in the case of class imbalance. This work offers a non-balanced semi-supervised SAR target recognition approach using dynamic energy scores and adaptive loss. First, an energy score-based method is developed to dynamically select unlabeled samples near to the training distribution as pseudo-labels during training, assuring pseudo-label reliability in long-tailed distribution circumstances. Secondly, loss functions suitable for class imbalances are proposed, including adaptive margin perception loss and adaptive hard triplet loss, the former offsets inter-class confusion of classifiers, alleviating the imbalance issue inherent in pseudo-label generation. The latter effectively tackles the model's preference for the majority class by focusing on complex difficult samples during training. Experimental results on extremely imbalanced SAR datasets demonstrate that the proposed method performs well under the dual constraints of scarce labels and data imbalance, effectively overcoming the model bias caused by data imbalance and achieving high-precision target recognition.
Related papers
- Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Revisiting Class Imbalance for End-to-end Semi-Supervised Object
Detection [1.6249267147413524]
Semi-supervised object detection (SSOD) has made significant progress with the development of pseudo-label-based end-to-end methods.
Many methods face challenges due to class imbalance, which hinders the effectiveness of the pseudo-label generator.
In this paper, we examine the root causes of low-quality pseudo-labels and present novel learning mechanisms to improve the label generation quality.
arXiv Detail & Related papers (2023-06-04T06:01:53Z) - Phased Progressive Learning with Coupling-Regulation-Imbalance Loss for
Imbalanced Classification [11.673344551762822]
Deep neural networks generally perform poorly with datasets that suffer from quantity imbalance and classification difficulty imbalance between different classes.
A phased progressive learning schedule was proposed for smoothly transferring the training emphasis from representation learning to upper classifier training.
Our code will be open source soon.
arXiv Detail & Related papers (2022-05-24T14:46:39Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals.
We analyze the challenges these methods meet with the empirical experiment results.
We introduce a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance.
arXiv Detail & Related papers (2022-03-23T07:33:37Z) - Label Distributionally Robust Losses for Multi-class Classification:
Consistency, Robustness and Adaptivity [55.29408396918968]
We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification.
Our contributions include both consistency and robustness by establishing top-$k$ consistency of LDR losses for multi-class classification.
We propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance.
arXiv Detail & Related papers (2021-12-30T00:27:30Z) - Robust Neural Network Classification via Double Regularization [2.41710192205034]
We propose a novel double regularization of the neural network training loss that combines a penalty on the complexity of the classification model and an optimal reweighting of training observations.
We demonstrate DRFit, for neural net classification of (i) MNIST and (ii) CIFAR-10, in both cases with simulated mislabeling.
arXiv Detail & Related papers (2021-12-15T13:19:20Z) - Towards Balanced Learning for Instance Recognition [149.76724446376977]
We propose Libra R-CNN, a framework towards balanced learning for instance recognition.
It integrates IoU-balanced sampling, balanced feature pyramid, and objective re-weighting, respectively for reducing the imbalance at sample, feature, and objective level.
arXiv Detail & Related papers (2021-08-23T13:40:45Z) - Semi-Supervised Object Detection with Adaptive Class-Rebalancing
Self-Training [5.874575666947381]
This study delves into semi-supervised object detection to improve detector performance with additional unlabeled data.
We propose a novel two-stage filtering algorithm to generate accurate pseudo-labels.
Our method achieves satisfactory improvements on MS-COCO and VOC benchmarks.
arXiv Detail & Related papers (2021-07-11T12:14:42Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
Main challenges in long-tailed recognition come from the imbalanced data distribution and sample scarcity in its tail classes.
We propose a new recognition setting, namely semi-supervised long-tailed recognition.
We demonstrate significant accuracy improvements over other competitive methods on two datasets.
arXiv Detail & Related papers (2021-05-01T00:43:38Z) - Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning [126.31716228319902]
We develop Distribution Aligning Refinery of Pseudo-label (DARP) algorithm.
We show that DARP is provably and efficiently compatible with state-of-the-art SSL schemes.
arXiv Detail & Related papers (2020-07-17T09:16:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.