Laplace transform based quantum eigenvalue transformation via linear combination of Hamiltonian simulation
- URL: http://arxiv.org/abs/2411.04010v1
- Date: Wed, 06 Nov 2024 15:47:48 GMT
- Title: Laplace transform based quantum eigenvalue transformation via linear combination of Hamiltonian simulation
- Authors: Dong An, Andrew M. Childs, Lin Lin, Lexing Ying,
- Abstract summary: We propose an efficient quantum algorithm for performing a class of eigenvalue transformations that can be expressed as a certain type of matrix Laplace transformation.
We demonstrate that our eigenvalue transformation approach can solve this problem without explicitly inverting $A$.
- Score: 13.96848357202551
- License:
- Abstract: Eigenvalue transformations, which include solving time-dependent differential equations as a special case, have a wide range of applications in scientific and engineering computation. While quantum algorithms for singular value transformations are well studied, eigenvalue transformations are distinct, especially for non-normal matrices. We propose an efficient quantum algorithm for performing a class of eigenvalue transformations that can be expressed as a certain type of matrix Laplace transformation. This allows us to significantly extend the recently developed linear combination of Hamiltonian simulation (LCHS) method [An, Liu, Lin, Phys. Rev. Lett. 131, 150603, 2023; An, Childs, Lin, arXiv:2312.03916] to represent a wider class of eigenvalue transformations, such as powers of the matrix inverse, $A^{-k}$, and the exponential of the matrix inverse, $e^{-A^{-1}}$. The latter can be interpreted as the solution of a mass-matrix differential equation of the form $A u'(t)=-u(t)$. We demonstrate that our eigenvalue transformation approach can solve this problem without explicitly inverting $A$, reducing the computational complexity.
Related papers
- Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - Quantum eigenvalue processing [0.0]
Problems in linear algebra can be solved on a quantum computer by processing eigenvalues of the non-normal input matrices.
We present a Quantum EigenValue Transformation (QEVT) framework for applying arbitrary transformations on eigenvalues of block-encoded non-normal operators.
We also present a Quantum EigenValue Estimation (QEVE) algorithm for operators with real spectra.
arXiv Detail & Related papers (2024-01-11T19:49:31Z) - Using Variational Eigensolvers on Low-End Hardware to Find the Ground
State Energy of Simple Molecules [0.0]
Key properties of physical systems can be described by the eigenvalues of matrices that represent the system.
Computational algorithms that determine the eigenvalues of these matrices exist, but they generally suffer from a loss of performance as the matrix grows in size.
This process can be expanded to quantum computation to find the eigenvalues with better performance than the classical algorithms.
arXiv Detail & Related papers (2023-10-29T18:36:18Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - A Quantum Algorithm for Functions of Multiple Commuting Hermitian
Matrices [0.0]
We introduce the quantum eigenvalue transformation for functions of commuting Hermitian.
We then present a framework for working with normal matrix functions in which we may solve MQET.
arXiv Detail & Related papers (2023-02-22T04:23:05Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - A Quantum Computer Amenable Sparse Matrix Equation Solver [0.0]
We study problems involving the solution of matrix equations, for which there currently exists no efficient, general quantum procedure.
We develop a generalization of the Harrow/Hassidim/Lloyd algorithm by providing an alternative unitary for eigenphase estimation.
This unitary has the advantage of being well defined for any arbitrary matrix equation, thereby allowing the solution procedure to be directly implemented on quantum hardware.
arXiv Detail & Related papers (2021-12-05T15:42:32Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
We present dimensionality reduction methods for non-PSD and square-roots" matrices.
We show how these techniques can be used for multiple downstream tasks.
arXiv Detail & Related papers (2021-06-16T04:07:48Z) - Hamiltonian singular value transformation and inverse block encoding [12.386348820609626]
We show how to perform the quantum singular value transformation for a matrix embedded as a block of a Hamiltonian.
We also show how to use the Hamiltonian quantum singular value transformation to perform inverse block encoding to implement a unitary of which a given Hamiltonian is a block.
arXiv Detail & Related papers (2021-04-03T13:58:27Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Sketching Transformed Matrices with Applications to Natural Language
Processing [76.6222695417524]
We propose a space-efficient sketching algorithm for computing the product of a given small matrix with the transformed matrix.
We show that our approach obtains small error and is efficient in both space and time.
arXiv Detail & Related papers (2020-02-23T03:07:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.