Multi-Scale and Multimodal Species Distribution Modeling
- URL: http://arxiv.org/abs/2411.04016v1
- Date: Wed, 06 Nov 2024 15:57:20 GMT
- Title: Multi-Scale and Multimodal Species Distribution Modeling
- Authors: Nina van Tiel, Robin Zbinden, Emanuele Dalsasso, Benjamin Kellenberger, Loïc Pellissier, Devis Tuia,
- Abstract summary: Species distribution models (SDMs) aim to predict the distribution of species relating occurrence data with environmental variables.
Recent applications of deep learning to SDMs have enabled new avenues, specifically the inclusion of spatial data.
We develop a modular structure for SDMs that allows us to test the effect of scale in both single- and multi-scale settings.
Results on the GeoLifeCLEF 2023 benchmark indicate that considering multimodal data and learning multi-scale representations leads to more accurate models.
- Score: 4.022195138381868
- License:
- Abstract: Species distribution models (SDMs) aim to predict the distribution of species by relating occurrence data with environmental variables. Recent applications of deep learning to SDMs have enabled new avenues, specifically the inclusion of spatial data (environmental rasters, satellite images) as model predictors, allowing the model to consider the spatial context around each species' observations. However, the appropriate spatial extent of the images is not straightforward to determine and may affect the performance of the model, as scale is recognized as an important factor in SDMs. We develop a modular structure for SDMs that allows us to test the effect of scale in both single- and multi-scale settings. Furthermore, our model enables different scales to be considered for different modalities, using a late fusion approach. Results on the GeoLifeCLEF 2023 benchmark indicate that considering multimodal data and learning multi-scale representations leads to more accurate models.
Related papers
- Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Deep autoregressive modeling for land use land cover [0.0]
Land use / land cover (LULC) modeling is a challenging task due to long-range dependencies between geographic features and distinct spatial patterns related to topography, ecology, and human development.
We identify a close connection between modeling of spatial patterns of land use and the task of image inpainting from computer vision and conduct a study of a modified PixelCNN architecture with approximately 19 million parameters for modeling LULC.
arXiv Detail & Related papers (2024-01-02T18:03:57Z) - LD-SDM: Language-Driven Hierarchical Species Distribution Modeling [9.620416509546471]
We focus on the problem of species distribution modeling using global-scale presence-only data.
To capture a stronger implicit relationship between species, we encode the taxonomic hierarchy of species using a large language model.
We propose a novel proximity-aware evaluation metric that enables evaluating species distribution models.
arXiv Detail & Related papers (2023-12-13T18:11:37Z) - T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified
Visual Modalities [69.16656086708291]
Diffusion Probabilistic Field (DPF) models the distribution of continuous functions defined over metric spaces.
We propose a new model comprising of a view-wise sampling algorithm to focus on local structure learning.
The model can be scaled to generate high-resolution data while unifying multiple modalities.
arXiv Detail & Related papers (2023-05-24T03:32:03Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - IMACS: Image Model Attribution Comparison Summaries [16.80986701058596]
We introduce IMACS, a method that combines gradient-based model attributions with aggregation and visualization techniques.
IMACS extracts salient input features from an evaluation dataset, clusters them based on similarity, then visualizes differences in model attributions for similar input features.
We show how our technique can uncover behavioral differences caused by domain shift between two models trained on satellite images.
arXiv Detail & Related papers (2022-01-26T21:35:14Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
This contribution proposes spatial prediction error profiles (SPEPs) and spatial variable importance profiles (SVIPs) as novel model-agnostic assessment and interpretation tools.
The SPEPs and SVIPs of geostatistical methods, linear models, random forest, and hybrid algorithms show striking differences and also relevant similarities.
The novel diagnostic tools enrich the toolkit of spatial data science, and may improve ML model interpretation, selection, and design.
arXiv Detail & Related papers (2021-11-13T01:50:36Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
We develop a framework for comparing data manifold, aimed at the evaluation of deep generative models.
Based on the Cross-Barcode, we introduce the Manifold Topology Divergence score (MTop-Divergence)
We demonstrate that the MTop-Divergence accurately detects various degrees of mode-dropping, intra-mode collapse, mode invention, and image disturbance.
arXiv Detail & Related papers (2021-06-08T00:30:43Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.