Quantum-Safe Hybrid Key Exchanges with KEM-Based Authentication
- URL: http://arxiv.org/abs/2411.04030v1
- Date: Wed, 06 Nov 2024 16:28:17 GMT
- Title: Quantum-Safe Hybrid Key Exchanges with KEM-Based Authentication
- Authors: Christopher Battarbee, Christoph Striecks, Ludovic Perret, Sebastian Ramacher, Kevin Verhaeghe,
- Abstract summary: In PQCrypto 2023, Bruckner, Ramacher and Striecks proposed a novel hybrid AKE (HAKE) protocol, dubbed Muckle+.
Muckle# uses post-quantum key-encapsulating mechanisms for implicit authentication inspired by recent works in the area of Transport Layer Security (TLS) protocols.
- Score: 2.102973349909511
- License:
- Abstract: Authenticated Key Exchange (AKE) between any two entities is one of the most important security protocols available for securing our digital networks and infrastructures. In PQCrypto 2023, Bruckner, Ramacher and Striecks proposed a novel hybrid AKE (HAKE) protocol, dubbed Muckle+, that is particularly useful in large quantum-safe networks consisting of a large number of nodes. Their protocol is hybrid in the sense that it allows key material from conventional and post-quantum primitives, as well as from quantum key distribution, to be incorporated into a single end-to-end shared key. To achieve the desired authentication properties, Muckle+ utilizes post-quantum digital signatures. However, available instantiations of such signatures schemes are not yet efficient enough compared to their post-quantum key-encapsulation mechanism (KEM) counterparts, particularly in large networks with potentially several connections in a short period of time. To mitigate this gap, we propose Muckle# that pushes the efficiency boundaries of currently known HAKE constructions. Muckle# uses post-quantum key-encapsulating mechanisms for implicit authentication inspired by recent works done in the area of Transport Layer Security (TLS) protocols, particularly, in KEMTLS (CCS'20). We port those ideas to the HAKE framework and develop novel proof techniques on the way. Due to our novel KEM-based approach, the resulting protocol has a slightly different message flow compared to prior work that we carefully align with the HAKE framework and which makes our changes to the Muckle+ non-trivial.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Establishing shared secret keys on quantum line networks: protocol and
security [0.0]
We show the security of multi-user key establishment on a single line of quantum communication.
We consider a quantum communication architecture where qubit generation and measurement happen at the two ends of the line.
arXiv Detail & Related papers (2023-04-04T15:35:23Z) - One-Time Universal Hashing Quantum Digital Signatures without Perfect
Keys [24.240914319917053]
We show that imperfect quantum keys with limited information leakage can be used for digital signatures and authentication without compromising security.
This study significantly reduces the delay for data postprocessing and is compatible with any quantum key generation protocols.
arXiv Detail & Related papers (2023-01-03T14:54:27Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Improved Semi-Quantum Key Distribution with Two Almost-Classical Users [1.827510863075184]
We revisit a mediated semi-quantum key distribution protocol introduced by Massa et al.
We show how this protocol may be extended to improve its efficiency and also its noise tolerance.
We evaluate the protocol's performance in a variety of lossy and noisy channels.
arXiv Detail & Related papers (2022-03-20T14:41:14Z) - Twin-field quantum digital signatures [4.503555294002338]
Digital signature is a key technique in information security, especially for identity authentications.
Quantum digital signatures (QDSs) provide a considerably higher level of security, i.e., information-theoretic security.
arXiv Detail & Related papers (2020-03-25T08:04:59Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.