Energy transport in a free Euler-Bernoulli beam in terms of Schrödinger's wave function
- URL: http://arxiv.org/abs/2411.04033v1
- Date: Wed, 06 Nov 2024 16:32:11 GMT
- Title: Energy transport in a free Euler-Bernoulli beam in terms of Schrödinger's wave function
- Authors: Serge N. Gavrilov, Anton M. Krivtsov, Ekaterina V. Shishkina,
- Abstract summary: The dynamics of a free infinite Euler-Bernoulli beam can be described by the Schr"odinger equation for a free particle and vice versa.
For two corresponding solutions $u$ and $psi$ the mechanical energy density calculated for $u$ propagates in the beam exactly in the same way as the probability density calculated for $psi$.
- Score: 0.0
- License:
- Abstract: The Schr\"odinger equation is not frequently used in the framework of the classical mechanics, though historically this equation was derived as a simplified equation, which is equivalent to the classical Germain-Lagrange dynamic plate equation. The question concerning the exact meaning of this equivalence is still discussed in modern literature. In this note, we consider the one-dimensional case, where the Germain-Lagrange equation reduces to the Euler-Bernoulli equation, which is used in the classical theory of a beam. We establish a one-to-one correspondence between the set of all solutions (i.e., wave functions ${\psi}$) of the 1D time-dependent Schr\"odinger equation for a free particle with arbitrary complex initial data and the set of ordered pairs of quantities (the beam strain and the particle velocity), which characterize solutions $u$ of the beam equation with arbitrary real initial data. Thus, the dynamics of a free infinite Euler-Bernoulli beam can be described by the Schr\"odinger equation for a free particle and vice versa. Finally, we show that for two corresponding solutions $u$ and ${\psi}$ the mechanical energy density calculated for $u$ propagates in the beam exactly in the same way as the probability density calculated for ${\psi}$.
Related papers
- Quantum simulation of the Fokker-Planck equation via Schrodingerization [33.76659022113328]
This paper studies a quantum simulation technique for solving the Fokker-Planck equation.
We employ the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations.
arXiv Detail & Related papers (2024-04-21T08:53:27Z) - Derivation of the Schr\"odinger equation from classical stochastic
dynamics [0.0]
The wave function $phi$ is assumed to be a complex time dependent random variable.
The Schr"odinger equation follows from the Liouville equation.
arXiv Detail & Related papers (2023-07-12T21:24:54Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Fall of a Particle to the Center of a Singular Potential: Classical vs.
Quantum Exact Solutions [0.0]
We inspect the quantum problem with the help of the conventional Schr"odinger's equation.
Surprisingly, the quantum and classical solutions exhibit striking similarities.
arXiv Detail & Related papers (2022-02-25T11:04:39Z) - Numerical investigation of the logarithmic Schr\"odinger model of
quantum decoherence [0.0]
We present a model of collisional decoherence of the wavefunction of a quantum particle in position-space.
The validity of the logarithmic Schr"odinger equation has not yet been investigated numerically for general initial conditions.
arXiv Detail & Related papers (2021-10-11T03:18:03Z) - Universal semiclassical equations based on the quantum metric [0.0]
We derive semiclassical equations of motion for an accelerated wavepacket in a two-band system.
We show that these equations can be formulated in terms of the static band geometry described by the quantum metric.
arXiv Detail & Related papers (2021-06-23T13:24:29Z) - Classical and Quantum Brownian Motion [0.0]
In quantum mechanics electrons and other point particles are no waves and the chapter of quantum mechanics originated for the force carriers.
A new projector operator is proposed for the collapse of the wave function of a quantum particle moving in a classical environment.
Considering the Brownian dynamics in the frames of the Bohmian mechanics, the density functional Bohm-Langevin equation is proposed.
arXiv Detail & Related papers (2021-05-12T13:24:39Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.