Disorder-Order Interface Propagating over the Ferromagnetic Ground State in the Transverse Field Ising Chain
- URL: http://arxiv.org/abs/2411.04089v1
- Date: Wed, 06 Nov 2024 18:08:48 GMT
- Title: Disorder-Order Interface Propagating over the Ferromagnetic Ground State in the Transverse Field Ising Chain
- Authors: Vanja Marić, Florent Ferro, Maurizio Fagotti,
- Abstract summary: We consider time evolution of order parameters and entanglement asymmetries in the ferromagnetic phase of the transverse-field Ising chain.
We focus on the disorder-order interface in which the order parameter attains a nonzero value, different from the ground state one.
We analyze the R'enyi entanglement asymmetries of subsystems and obtain a prediction that is expected to hold also in the von Neumann limit.
- Score: 0.0
- License:
- Abstract: We consider time evolution of order parameters and entanglement asymmetries in the ferromagnetic phase of the transverse-field Ising chain. One side of the system is prepared in a ferromagnetic ground state and the other side either in equilibrium at higher temperature or out of equilibrium. We focus on the disorder-order interface in which the order parameter attains a nonzero value, different from the ground state one. In that region, correlations follow a universal behaviour. We analytically compute the asymptotic scaling functions of the one- and two-point equal time correlations of the order parameter and provide numerical evidence that also the non-equal time correlations are universal. We analyze the R\'enyi entanglement asymmetries of subsystems and obtain a prediction that is expected to hold also in the von Neumann limit. Finally, we show that the Wigner-Yanase skew information of the order paramerter in subsystems within the interfacial region scales as their length squared. We propose a semiclassical approximation that is particularly effective close to the edge of the lightcone.
Related papers
- Surface criticality in the mixed-field Ising model with sign-inverted next-nearest-neighbor interaction [0.0]
Rydberg atoms in an optical tweezer array have been used as a quantum simulator of the spin-$1/2$ antiferromagnetic Ising model.
We study the surface criticality associated with the first-order quantum phase transition between the antiferromagnetic and paramagnetic phases.
arXiv Detail & Related papers (2024-06-10T07:27:01Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Mean-field approach to Mid-spectrum Eigenstates of long-range
interacting Quantum Systems [0.5874142059884521]
We study the equilibrium properties of the spin-$1/2$ XY chain with an infinite-range transverse interaction.
We show that the two gapless points of the XY model behave in fundamentally different ways.
arXiv Detail & Related papers (2023-10-15T11:20:35Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Simulating scalar field theories on quantum computers with limited
resources [62.997667081978825]
We present a quantum algorithm for implementing $phi4$ lattice scalar field theory on qubit computers.
The algorithm allows efficient $phi4$ state preparation for a large range of input parameters in both the normal and broken symmetry phases.
arXiv Detail & Related papers (2022-10-14T17:28:15Z) - Emergent XY* transition driven by symmetry fractionalization and anyon
condensation [0.0]
We study the phase diagram and anyon condensation transitions of a $mathbbZ$ topological order perturbed by Ising interactions in the Toric Code.
The interplay between the global Ising symmetry and the lattice space group symmetries results in a non-trivial symmetry fractionalization class for the anyons.
We provide numerical evidence for the occurrence of two symmetry breaking patterns predicted by the specific symmetry fractionalization class of the anyons in the explored phase diagram.
arXiv Detail & Related papers (2022-04-07T18:00:00Z) - Ground-state and thermal entanglements in a non-Hermitian XY system with
real and imaginary magnetic fields [4.274841694848563]
We study the non-Hermitian spin-1/2 XY model in the presence of alternating, imaginary and transverse magnetic fields.
For the one-dimensional spin chain, the magnetization and entanglement are studied by using the two-spin cluster mean-field approximation.
arXiv Detail & Related papers (2022-03-10T13:45:24Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z) - Realising the Symmetry-Protected Haldane Phase in Fermi-Hubbard Ladders [0.0]
Topology in quantum many-body systems has profoundly changed our understanding of quantum phases of matter.
Here, we realise such a topological Haldane phase with Fermi-Hubbard ladders in an ultracold-atom quantum simulator.
arXiv Detail & Related papers (2021-03-18T17:55:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.