論文の概要: High-fidelity gates in a transmon using bath engineering for passive leakage reset
- arxiv url: http://arxiv.org/abs/2411.04101v1
- Date: Wed, 06 Nov 2024 18:28:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:06.227485
- Title: High-fidelity gates in a transmon using bath engineering for passive leakage reset
- Title(参考訳): 受動的漏洩リセットのための水槽工学を用いたトランスモン中の高忠実ゲート
- Authors: Ted Thorbeck, Alexander McDonald, O. Lanes, John Blair, George Keefe, Adam A. Stabile, Baptiste Royer, Luke C. G. Govia, Alexandre Blais,
- Abstract要約: 漏洩(Leakage)は、計算に使われない状態の占有であり、量子エラー訂正において最も破壊的なエラーの1つである。
トランスモン中の漏れ状態の寿命を3桁に短縮する装置を実証する。
- 参考スコア(独自算出の注目度): 65.46249968484794
- License:
- Abstract: Leakage, the occupation of any state not used in the computation, is one of the of the most devastating errors in quantum error correction. Transmons, the most common superconducting qubits, are weakly anharmonic multilevel systems, and are thus prone to this type of error. Here we demonstrate a device which reduces the lifetimes of the leakage states in the transmon by three orders of magnitude, while protecting the qubit lifetime and the single-qubit gate fidelties. To do this we attach a qubit through an on-chip seventh-order Chebyshev filter to a cold resistor. The filter is engineered such that the leakage transitions are in its passband, while the qubit transition is in its stopband. Dissipation through the filter reduces the lifetime of the transmon's $f$ state, the lowest energy leakage state, by three orders of magnitude to 33 ns, while simultaneously keeping the qubit lifetime to greater than 100 $\mu$s. Even though the $f$ state is transiently populated during a single qubit gate, no negative effect of the filter is detected with errors per gate approaching 1e-4. Modelling the filter as coupled linear harmonic oscillators, our theoretical analysis of the device corroborate our experimental findings. This leakage reduction unit turns leakage errors into errors within the qubit subspace that are correctable with traditional quantum error correction. We demonstrate the operation of the filter as leakage reduction unit in a mock-up of a single-qubit quantum error correcting cycle, showing that the filter increases the seepage rate back to the qubit subspace.
- Abstract(参考訳): 漏洩(Leakage)は、計算に使われない状態の占有であり、量子エラー訂正において最も破壊的なエラーの1つである。
最も一般的な超伝導量子ビットであるトランスモンは、弱い無調和なマルチレベルシステムであり、そのためこの種のエラーを起こしやすい。
ここでは,トランスモン中の漏洩状態の寿命を3桁程度削減し,キュービット寿命と単一キュービットゲートフィリティーを保護した装置を実証する。
これを行うために、オンチップ7階チェビシェフフィルタを介してクォービットをコールド抵抗器にアタッチする。
フィルタは、リーク遷移が通過帯域にあり、キュービット遷移が停止帯域にあるように設計されている。
フィルターによる散逸は、トランスモンの最低エネルギーリーク状態である$f$状態の寿命を3桁から33 nsに減らし、同時にキュービット寿命を100$\mu$s以上に抑える。
単一キュービットゲートでは$f$状態が過渡的に占有されるが、1e-4 に近づくゲートあたりの誤差でフィルタの負の効果は検出されない。
フィルタを結合した線形高調波発振器としてモデル化し,実験結果の相関性について理論的解析を行った。
このリーク低減ユニットは、リークエラーを従来の量子エラー補正で修正可能なキュービット部分空間内のエラーに変換する。
単一量子ビット量子誤り訂正サイクルのモックアップにおいて, リーク低減ユニットとしてのフィルタの動作を実演し, フィルタがキュービット部分空間への浸透率を増大させることを示す。
関連論文リスト
- Protected Fluxonium Control with Sub-harmonic Parametric Driving [0.0]
制御チャネルを通した量子ビット崩壊を除去する超伝導フラクソニウム量子ビットの新しい制御方式を示す。
フラックスラインにローパスフィルタを加えることで、フラックスバイアスが可能となり、同時にフラックスロニウム量子ビットをコヒーレントに制御することができる。
我々は、最大11光子サブハーモニックドライブによるコヒーレント制御を実証し、フラキソニウムポテンシャルの強い非線形性を強調した。
論文 参考訳(メタデータ) (2024-10-01T08:27:19Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
共振結合された一対のトランスモンからなる「デュアルレール量子ビット」が高コヒーレントな消去量子ビットを形成することを示す。
我々は、チェック毎に0.1%$ dephasingエラーを導入しながら、消去エラーの中間回路検出を実演する。
この研究は、ハードウェア効率の量子誤り訂正のための魅力的なビルディングブロックとして、トランスモンベースのデュアルレールキュービットを確立する。
論文 参考訳(メタデータ) (2023-07-17T18:00:01Z) - All-microwave leakage reduction units for quantum error correction with
superconducting transmon qubits [0.0]
量子回路を量子ビットとして使用する場合、計算状態からのリークを最小限にすることは困難である。
Battistelらによって提案された回路QEDアーキテクチャにおいて,トランスモンの量子ハードウエア効率,全マイクロ波リーク低減ユニット(LRU)を実現し,拡張する。
このLRUは、第2および第3の励起されたトランスモン状態の漏れを効果的に低減し、最大99%の有効率を220mathrmns$で、クォービット部分空間に最小限の影響を与える。
論文 参考訳(メタデータ) (2023-02-20T10:10:53Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
計算状態から高エネルギー状態への量子情報の漏洩は、量子誤り訂正(QEC)の追求における大きな課題である。
本稿では,Sycamore量子プロセッサ上で,各サイクルの全てのキュービットから漏れが除去される距離3曲面符号と距離21ビットフリップ符号の実行を実演する。
本報告では, 論理状態を符号化したデータキュービットにおける定常リーク集団の10倍の減少と, デバイス全体の平均リーク人口の1/10〜3ドルの減少を報告した。
論文 参考訳(メタデータ) (2022-11-09T07:54:35Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
この劣化を逆転させるために、低オーバーヘッドプロトコルを導入します。
振幅減衰雑音に対する非単位確率フィルタの実装のための2つのトラップイオンスキームを提案する。
このフィルタは、単一コピー準蒸留のためのプロトコルとして理解することができる。
論文 参考訳(メタデータ) (2022-09-06T18:18:41Z) - Fast high-fidelity composite gates in superconducting qubits: Beating
the Fourier leakage limit [0.0]
本稿では,超伝導量子ビットにおける量子制御手法を提案する。
我々は、量子ビット状態間の完全かつ部分的な人口移動と、3つの基本的な単一量子ビットの量子ゲートを生成するために、我々のアプローチを利用する。
論文 参考訳(メタデータ) (2022-05-09T10:10:05Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - A hardware-efficient leakage-reduction scheme for quantum error
correction with superconducting transmon qubits [1.6328866317851185]
量子ビット計算部分空間の外の漏れは量子エラー補正(QEC)に脅威をもたらす
本稿では,2つのリーク低減ユニット(LRU)を用いて,これらの問題をトランスモンベースサーフェスコードに対して緩和する手法を提案する。
これは論理的誤り率の大幅な低減につながることを示す。
論文 参考訳(メタデータ) (2021-02-16T18:21:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。