論文の概要: UnityGraph: Unified Learning of Spatio-temporal features for Multi-person Motion Prediction
- arxiv url: http://arxiv.org/abs/2411.04151v1
- Date: Wed, 06 Nov 2024 08:05:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:40:03.460015
- Title: UnityGraph: Unified Learning of Spatio-temporal features for Multi-person Motion Prediction
- Title(参考訳): UnityGraph: 多人数動作予測のための時空間特徴の統一学習
- Authors: Kehua Qu, Rui Ding, Jin Tang,
- Abstract要約: 多対人動作予測は、重要な実世界の応用を持つ複雑な新興分野である。
本稿では,複数の時間的特徴を全体として扱う新しいグラフ構造UnityGraphを提案し,モデルコヒーレンスと結合時間的特徴を向上する。
提案手法は最先端の性能を達成し,その有効性と革新的な設計を実証する。
- 参考スコア(独自算出の注目度): 13.052342503276936
- License:
- Abstract: Multi-person motion prediction is a complex and emerging field with significant real-world applications. Current state-of-the-art methods typically adopt dual-path networks to separately modeling spatial features and temporal features. However, the uncertain compatibility of the two networks brings a challenge for spatio-temporal features fusion and violate the spatio-temporal coherence and coupling of human motions by nature. To address this issue, we propose a novel graph structure, UnityGraph, which treats spatio-temporal features as a whole, enhancing model coherence and coupling.spatio-temporal features as a whole, enhancing model coherence and coupling. Specifically, UnityGraph is a hypervariate graph based network. The flexibility of the hypergraph allows us to consider the observed motions as graph nodes. We then leverage hyperedges to bridge these nodes for exploring spatio-temporal features. This perspective considers spatio-temporal dynamics unitedly and reformulates multi-person motion prediction into a problem on a single graph. Leveraging the dynamic message passing based on this hypergraph, our model dynamically learns from both types of relations to generate targeted messages that reflect the relevance among nodes. Extensive experiments on several datasets demonstrates that our method achieves state-of-the-art performance, confirming its effectiveness and innovative design.
- Abstract(参考訳): マルチパーソン動作予測は、実世界の重要な応用を持つ複雑で新興の分野である。
現在の最先端の手法は、通常、空間的特徴と時間的特徴を別々にモデル化するためにデュアルパスネットワークを採用する。
しかしながら、2つのネットワークの不確実性は、時空間的特徴融合の課題をもたらし、時空間的コヒーレンスと人間の動作の自然による結合に反する。
この問題に対処するため,時空間的特徴を全体として扱う新しいグラフ構造UnityGraphを提案し,モデルコヒーレンスと結合性を向上し,時空間的特徴を全体として拡張し,モデルコヒーレンスと結合性を高める。
具体的には、UnityGraphはハイパー変数グラフベースのネットワークである。
ハイパーグラフの柔軟性により、観測された動きをグラフノードとして考えることができる。
ハイパーエッジを利用してこれらのノードをブリッジし、時空間的特徴を探索します。
この観点では、時空間のダイナミクスを統一的に考慮し、複数の人物の動き予測を1つのグラフ上の問題に再構成する。
このハイパーグラフに基づく動的メッセージパッシングを活用することで、我々のモデルは、両方のタイプの関係から動的に学習し、ノード間の関連性を反映したターゲットメッセージを生成する。
いくつかのデータセットに対する大規模な実験により,本手法が最先端の性能を実現し,その有効性と革新的な設計が実証された。
関連論文リスト
- COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for
Traffic Forecasting [10.392021668859272]
本稿では,先行情報と後続情報から異種グラフをモデル化し,高次時間関係を連続的に捉えるコンジョイント時空間グラフニューラルネットワーク(COOL)を提案する。
交通予知性を高めるために,マルチランクとマルチスケールの両方から多様な時間パターンをモデル化するコンジョイント・アテンション・デコーダを提案する。
論文 参考訳(メタデータ) (2024-03-02T04:30:09Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Dynamic Graph Convolutional Network with Attention Fusion for Traffic
Flow Prediction [10.3426659705376]
本稿では,同期時空間相関をモデル化するための注意融合型動的グラフ畳み込みネットワークを提案する。
我々は、4つの実世界の交通データセットにおいて、我々の手法が18のベースライン法と比較して最先端の性能を上回ることを示す広範な実験を行った。
論文 参考訳(メタデータ) (2023-02-24T12:21:30Z) - Multi-Task Edge Prediction in Temporally-Dynamic Video Graphs [16.121140184388786]
MTD-GNNは,複数種類の関係に対して時間動的エッジを予測するグラフネットワークである。
時間-動的グラフネットワークにおける複数の関係をモデル化することは相互に有益であることを示す。
論文 参考訳(メタデータ) (2022-12-06T10:41:00Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
既存の作業は、動的グラフを変更のシーケンスとして見るだけである。
動的グラフを接合時間に付随する時間的エッジシーケンスとして定式化する。
頂点とエッジのタイムパン
組み込みにはタイムアウェアなTransformerが提案されている。
vertexの動的接続と学習へのToEs。
頂点表現
論文 参考訳(メタデータ) (2022-07-01T15:32:56Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
長期的テンソル時間予測(LSTF)は、空間的領域と時間的領域、文脈的情報、およびデータ固有のパターン間の長期的依存関係を利用する。
本稿では,各ノードのコンテキスト情報と長期駐車による時間的データ依存構造を表現する新しいグラフモデルを提案する。
提案手法は,LSTF予測タスクにおける既存のグラフニューラルネットワークモデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-04-23T06:51:37Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。