List Decodable Quantum LDPC Codes
- URL: http://arxiv.org/abs/2411.04306v1
- Date: Wed, 06 Nov 2024 23:08:55 GMT
- Title: List Decodable Quantum LDPC Codes
- Authors: Thiago Bergamaschi, Fernando Granha Jeronimo, Tushant Mittal, Shashank Srivastava, Madhur Tulsiani,
- Abstract summary: We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
- Score: 49.2205789216734
- License:
- Abstract: We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff and efficient list decoding up to the Johnson bound in polynomial time. Previous constructions of list decodable good distance quantum codes either required access to a classical side channel or were based on algebraic constructions that preclude the LDPC property. Our construction relies on new algorithmic results for codes obtained via the quantum analog of the distance amplification scheme of Alon, Edmonds, and Luby [FOCS 1995]. These results are based on convex relaxations obtained using the Sum-of-Squares hierarchy, which reduce the problem of list decoding the distance amplified codes to unique decoding the starting base codes. Choosing these base codes to be the recent breakthrough constructions of good QLDPC codes with efficient unique decoders, we get efficiently list decodable QLDPC codes.
Related papers
- Decoding Quasi-Cyclic Quantum LDPC Codes [23.22566380210149]
Quantum low-density parity-check (qLDPC) codes are an important component in the quest for fault tolerance.
Recent progress on qLDPC codes has led to constructions which are quantumally good, and which admit linear-time decoders to correct errors affecting a constant fraction of codeword qubits.
In practice, the surface/toric codes, which are the product of two repetition codes, are still often the qLDPC codes of choice.
arXiv Detail & Related papers (2024-11-07T06:25:27Z) - Decoding Quantum LDPC Codes Using Graph Neural Networks [52.19575718707659]
We propose a novel decoding method for Quantum Low-Density Parity-Check (QLDPC) codes based on Graph Neural Networks (GNNs)
The proposed GNN-based QLDPC decoder exploits the sparse graph structure of QLDPC codes and can be implemented as a message-passing decoding algorithm.
arXiv Detail & Related papers (2024-08-09T16:47:49Z) - Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
arXiv Detail & Related papers (2024-06-09T12:08:56Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - A Joint Code and Belief Propagation Decoder Design for Quantum LDPC Codes [5.194602156761048]
We propose a novel joint code and decoder design for QLDPC codes.
Joint codes have a minimum distance of about the square root of the block length.
Results demonstrate outstanding decoding performance over depolarizing channels.
arXiv Detail & Related papers (2024-01-12T20:07:16Z) - Quaternary Neural Belief Propagation Decoding of Quantum LDPC Codes with
Overcomplete Check Matrices [45.997444794696676]
Quantum low-density parity-check (QLDPC) codes are promising candidates for error correction in quantum computers.
One of the major challenges in implementing QLDPC codes in quantum computers is the lack of a universal decoder.
We first propose to decode QLDPC codes with a belief propagation (BP) decoder operating on overcomplete check matrices.
We extend the neural BP (NBP) decoder, which was originally studied for suboptimal binary BP decoding of QLPDC codes, to quaternary BP decoders.
arXiv Detail & Related papers (2023-08-16T08:24:06Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - An efficient decoder for a linear distance quantum LDPC code [0.1657441317977376]
We present a linear time decoder for the recent quantumally good qLDPC codes.
Our decoder is an iterative algorithm which searches for corrections within constant-sized regions.
arXiv Detail & Related papers (2022-06-14T02:17:09Z) - KO codes: Inventing Nonlinear Encoding and Decoding for Reliable
Wireless Communication via Deep-learning [76.5589486928387]
Landmark codes underpin reliable physical layer communication, e.g., Reed-Muller, BCH, Convolution, Turbo, LDPC and Polar codes.
In this paper, we construct KO codes, a computationaly efficient family of deep-learning driven (encoder, decoder) pairs.
KO codes beat state-of-the-art Reed-Muller and Polar codes, under the low-complexity successive cancellation decoding.
arXiv Detail & Related papers (2021-08-29T21:08:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.