Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding
- URL: http://arxiv.org/abs/2406.12900v2
- Date: Thu, 10 Oct 2024 12:36:25 GMT
- Title: Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding
- Authors: Yoni Choukroun, Lior Wolf,
- Abstract summary: Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
- Score: 62.25533750469467
- License:
- Abstract: The design of optimal linear block codes capable of being efficiently decoded is of major concern, especially for short block lengths. As near capacity-approaching codes, Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes, the most notable being its efficient decoding via Belief Propagation. While many LDPC code design methods exist, the development of efficient sparse codes that meet the constraints of modern short code lengths and accommodate new channel models remains a challenge. In this work, we propose for the first time a gradient-based data-driven approach for the design of sparse codes. We develop locally optimal codes with respect to Belief Propagation decoding via the learning of the Factor graph under channel noise simulations. This is performed via a novel complete graph tensor representation of the Belief Propagation algorithm, optimized over finite fields via backpropagation and coupled with an efficient line-search method. The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude and demonstrates the power of data-driven approaches for code design.
Related papers
- Learning Linear Block Error Correction Codes [62.25533750469467]
We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
arXiv Detail & Related papers (2024-05-07T06:47:12Z) - Graph Neural Networks for Enhanced Decoding of Quantum LDPC Codes [6.175503577352742]
We propose a differentiable iterative decoder for quantum low-density parity-check (LDPC) codes.
The proposed algorithm is composed of classical belief propagation (BP) decoding stages and intermediate graph neural network (GNN) layers.
arXiv Detail & Related papers (2023-10-26T19:56:25Z) - Robust Non-Linear Feedback Coding via Power-Constrained Deep Learning [7.941112438865385]
We develop a new family of non-linear feedback codes that greatly enhance robustness to channel noise.
Our autoencoder-based architecture is designed to learn codes based on consecutive blocks of bits.
We show that our scheme outperforms state-of-the-art feedback codes by wide margins over practical forward and feedback noise regimes.
arXiv Detail & Related papers (2023-04-25T22:21:26Z) - Machine Learning-Aided Efficient Decoding of Reed-Muller Subcodes [59.55193427277134]
Reed-Muller (RM) codes achieve the capacity of general binary-input memoryless symmetric channels.
RM codes only admit limited sets of rates.
Efficient decoders are available for RM codes at finite lengths.
arXiv Detail & Related papers (2023-01-16T04:11:14Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
Recently, neural decoders have demonstrated their advantage over classical decoding techniques.
Recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders.
We propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths.
arXiv Detail & Related papers (2022-09-16T11:00:50Z) - Graph Neural Networks for Channel Decoding [71.15576353630667]
We showcase competitive decoding performance for various coding schemes, such as low-density parity-check (LDPC) and BCH codes.
The idea is to let a neural network (NN) learn a generalized message passing algorithm over a given graph.
We benchmark our proposed decoder against state-of-the-art in conventional channel decoding as well as against recent deep learning-based results.
arXiv Detail & Related papers (2022-07-29T15:29:18Z) - Lightweight Projective Derivative Codes for Compressed Asynchronous
Gradient Descent [6.055286666916789]
This paper proposes a novel algorithm that encodes the partial derivatives themselves and furthermore optimize the codes by performing lossy compression on the derivative codewords.
The utility of this application of coding theory is a geometrical consequence of the observed fact in optimization research that noise is tolerable, sometimes even helpful, in gradient descent based learning algorithms.
arXiv Detail & Related papers (2022-01-31T04:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.