論文の概要: Towards Optimizing SQL Generation via LLM Routing
- arxiv url: http://arxiv.org/abs/2411.04319v1
- Date: Wed, 06 Nov 2024 23:47:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:17.591947
- Title: Towards Optimizing SQL Generation via LLM Routing
- Title(参考訳): LLMルーティングによるSQL生成の最適化に向けて
- Authors: Mohammadhossein Malekpour, Nour Shaheen, Foutse Khomh, Amine Mhedhbi,
- Abstract要約: 大規模言語モデル(LLM)は複雑なクエリに対して高い精度を達成するが、より単純なクエリでは不要なレイテンシとコストがかかる。
クエリ毎に最もコスト効率の良いLCMを動的に選択するText-to-sqlに対して,最初のLLMルーティング手法を提案する。
コスト削減を図りながら、最も有能なLCMに匹敵する精度を実現する2つのルーティング戦略を提案する。
- 参考スコア(独自算出の注目度): 10.586036551269935
- License:
- Abstract: Text-to-SQL enables users to interact with databases through natural language, simplifying access to structured data. Although highly capable large language models (LLMs) achieve strong accuracy for complex queries, they incur unnecessary latency and dollar cost for simpler ones. In this paper, we introduce the first LLM routing approach for Text-to-SQL, which dynamically selects the most cost-effective LLM capable of generating accurate SQL for each query. We present two routing strategies (score- and classification-based) that achieve accuracy comparable to the most capable LLM while reducing costs. We design the routers for ease of training and efficient inference. In our experiments, we highlight a practical and explainable accuracy-cost trade-off on the BIRD dataset.
- Abstract(参考訳): Text-to-SQLを使えば、自然言語でデータベースと対話でき、構造化データへのアクセスが簡単になる。
高い能力を持つ大規模言語モデル(LLM)は複雑なクエリに対して高い精度を達成するが、単純なクエリでは不要なレイテンシとコストが発生する。
本稿では,クエリ毎にSQLを正確に生成できる最もコスト効率の高いLCMを動的に選択する,Text-to-SQLの最初のLCMルーティング手法を提案する。
コストを削減しつつ、最も有能なLCMに匹敵する精度を実現する2つのルーティング戦略(スコアベースと分類ベース)を提案する。
トレーニングの容易さと効率的な推論のためにルータを設計する。
実験では,BIRDデータセット上で,実用的で説明可能な精度とコストのトレードオフを強調した。
関連論文リスト
- Grounding by Trying: LLMs with Reinforcement Learning-Enhanced Retrieval [55.63711219190506]
大きな言語モデル(LLM)は、しばしば適切な検索クエリのポーズに苦労する。
私たちは$underlineLe$arningを$underlineRe$trieveに$underlineT$rying (LeReT)を導入します。
LeReTは、絶対精度を最大29%向上し、下流ジェネレータの評価を17%向上させることができる。
論文 参考訳(メタデータ) (2024-10-30T17:02:54Z) - PTD-SQL: Partitioning and Targeted Drilling with LLMs in Text-to-SQL [54.304872649870575]
大規模言語モデル(LLM)は、テキスト・トゥ・センス・タスクの強力なツールとして登場した。
本研究では,クエリグループパーティショニングを用いることで,単一問題に特有の思考プロセスの学習に集中できることを示す。
論文 参考訳(メタデータ) (2024-09-21T09:33:14Z) - Relational Database Augmented Large Language Model [59.38841050766026]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクに優れる。
彼らは、トレーニングや教師付き微調整プロセスを通じてのみ、新しい知識を取り入れることができる。
この正確で最新のプライベート情報は、通常リレーショナルデータベースに格納される。
論文 参考訳(メタデータ) (2024-07-21T06:19:10Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - PURPLE: Making a Large Language Model a Better SQL Writer [14.627323505405327]
NL2タスクに必要な論理演算子構成を含む実演を検索することで精度を向上させるPURPLEを提案する。
PURPLEは、一般的なNL2ベンチマークの検証セット上で80.5%の正確な一致精度と87.8%の実行一致精度という、最先端の新たなパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-03-29T07:01:29Z) - PET-SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-consistency [19.067737007347613]
スパイダーベンチマークで新しいSOTA結果が得られ、実行精度は87.6%である。
提案手法は, 87.6%の精度で, スパイダーベンチマークで新しいSOTA結果が得られる。
論文 参考訳(メタデータ) (2024-03-13T02:32:41Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Querying Large Language Models with SQL [16.383179496709737]
多くのユースケースでは、情報はテキストに格納されるが、構造化データでは利用できない。
事前訓練されたLarge Language Models (LLMs) の台頭に伴い、大量のテキストコーパスから抽出された情報を保存および使用するための効果的なソリューションが現在存在する。
本稿では,従来のデータベースアーキテクチャに基づくプロトタイプであるGaloisについて紹介する。
論文 参考訳(メタデータ) (2023-04-02T06:58:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。