論文の概要: Gradient Boosting Trees and Large Language Models for Tabular Data Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2411.04324v1
- Date: Wed, 06 Nov 2024 23:54:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:55.467154
- Title: Gradient Boosting Trees and Large Language Models for Tabular Data Few-Shot Learning
- Title(参考訳): タブラルデータFew-Shot学習のためのグラディエントブースティングツリーと大規模言語モデル
- Authors: Carlos Huertas,
- Abstract要約: 大規模言語モデル(LLM)は機械学習(ML)に多くの新しいアプリケーションをもたらした
本研究は, LLMが有効な代替手段であることを示すものであるが, 性能評価に用いるベースラインの改善が期待できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLM) have brought numerous of new applications to Machine Learning (ML). In the context of tabular data (TD), recent studies show that TabLLM is a very powerful mechanism for few-shot-learning (FSL) applications, even if gradient boosting decisions trees (GBDT) have historically dominated the TD field. In this work we demonstrate that although LLMs are a viable alternative, the evidence suggests that baselines used to gauge performance can be improved. We replicated public benchmarks and our methodology improves LightGBM by 290%, this is mainly driven by forcing node splitting with few samples, a critical step in FSL with GBDT. Our results show an advantage to TabLLM for 8 or fewer shots, but as the number of samples increases GBDT provides competitive performance at a fraction of runtime. For other real-life applications with vast number of samples, we found FSL still useful to improve model diversity, and when combined with ExtraTrees it provides strong resilience to overfitting, our proposal was validated in a ML competition setting ranking first place.
- Abstract(参考訳): 大規模言語モデル(LLM)は機械学習(ML)に多くの新しいアプリケーションをもたらした。
表型データ(TD)の文脈において、最近の研究では、TabLLMが、たとえ勾配向上決定木(GBDT)が歴史的にTD分野を支配していたとしても、少数ショットラーニング(FSL)アプリケーションにとって非常に強力なメカニズムであることが示されている。
本研究は, LLMが有効な代替手段であることを示すものであるが, 性能評価に用いるベースラインの改善が期待できることを示す。
私たちは公開ベンチマークを再現し、LightGBMを290%改善しました。
以上の結果から,TabLLMは8枚以下の撮影で有利であるが,サンプル数が増加するにつれてGBDTはわずかな実行時間で競争性能が向上することがわかった。
多数のサンプルを持つ他の実生活アプリケーションでは、FSLはモデルの多様性を改善するのに依然として有用であることが分かり、ExtraTreesと組み合わせることで、オーバーフィッティングに対する強いレジリエンスが得られ、私たちの提案はMLコンペティションのランキング1位で検証されました。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
本稿では,機能エンジニアとして大規模言語モデルを用いる新しい文脈内学習フレームワークFeatLLMを提案する。
FeatLLMは高品質なルールを生成し、TabLLMやSTUNTなどよりも大幅に(平均で10%)優れている。
論文 参考訳(メタデータ) (2024-04-15T06:26:08Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
本研究では,文埋め込み性能の向上を目的としたテキスト内学習手法を提案する。
提案手法では,従来のプロンプトに基づく表現手法を自己回帰モデルに適用する。
モデルサイズをスケールすることで、数千億以上のパラメータへのスケーリングが意味的なテキスト類似性タスクのパフォーマンスを損なうことが分かる。
論文 参考訳(メタデータ) (2023-07-31T13:26:03Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Alleviating Over-smoothing for Unsupervised Sentence Representation [96.19497378628594]
本稿では,この問題を緩和するために,SSCL(Self-Contrastive Learning)というシンプルな手法を提案する。
提案手法は非常に単純で,様々な最先端モデルに拡張して,性能向上を図ることができる。
論文 参考訳(メタデータ) (2023-05-09T11:00:02Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
非パラメトリックニューラルネットワークモデル(NLM)は、外部データストアを用いてテキストの予測分布を学習する。
比較性能を維持しながら、推論速度の最大6倍の高速化を実現する方法を示す。
論文 参考訳(メタデータ) (2021-09-09T12:32:28Z) - Enhancing Transformers with Gradient Boosted Decision Trees for NLI
Fine-Tuning [7.906608953906889]
ニューラルネットワークによる余分な計算を行なわずに性能を向上させるために、微調整中に計算された機能にGBDTヘッドを装着するFreeGBDTを導入する。
強力なベースラインモデルを用いて,複数のNLIデータセットに対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2021-05-08T22:31:51Z) - Improving Semi-supervised Federated Learning by Reducing the Gradient
Diversity of Models [67.66144604972052]
Federated Learning(FL)は、ユーザのプライバシを維持しながらモバイルデバイスのコンピューティングパワーを使用する、有望な方法だ。
テスト精度に影響を与える重要な問題は、異なるユーザーからのモデルの勾配の多様性であることを示す。
本稿では,FedAvg平均化を代替するグループモデル平均化手法を提案する。
論文 参考訳(メタデータ) (2020-08-26T03:36:07Z) - TAFSSL: Task-Adaptive Feature Sub-Space Learning for few-shot
classification [50.358839666165764]
本稿では,タスク適応機能サブスペース学習(TAFSSL)により,Few-Shot Learningシナリオの性能を大幅に向上させることができることを示す。
具体的には、挑戦的な miniImageNet と tieredImageNet ベンチマークにおいて、TAFSSL はトランスダクティブおよび半教師付き FSL 設定の両方で現在の状態を改善することができることを示しています。
論文 参考訳(メタデータ) (2020-03-14T16:59:17Z) - Revisiting Training Strategies and Generalization Performance in Deep
Metric Learning [28.54755295856929]
我々は、最も広く使われているDML目的関数を再検討し、重要なパラメータ選択について検討する。
一貫した比較では、DMLの目的は文学で示されるよりもはるかに高い飽和を示す。
これらの知見を公開し、ランキングベースのDMLモデルの性能を確実に向上させるために、単純かつ効果的に正規化を訓練することを提案する。
論文 参考訳(メタデータ) (2020-02-19T22:16:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。