Impact of white noise in artificial neural networks trained for classification: performance and noise mitigation strategies
- URL: http://arxiv.org/abs/2411.04354v1
- Date: Thu, 07 Nov 2024 01:21:12 GMT
- Title: Impact of white noise in artificial neural networks trained for classification: performance and noise mitigation strategies
- Authors: Nadezhda Semenova, Daniel Brunner,
- Abstract summary: We consider how additive and multiplicative Gaussian white noise on the neuronal level can affect the accuracy of the network.
We adapt several noise reduction techniques to the essential setting of classification tasks.
- Score: 0.0
- License:
- Abstract: In recent years, the hardware implementation of neural networks, leveraging physical coupling and analog neurons has substantially increased in relevance. Such nonlinear and complex physical networks provide significant advantages in speed and energy efficiency, but are potentially susceptible to internal noise when compared to digital emulations of such networks. In this work, we consider how additive and multiplicative Gaussian white noise on the neuronal level can affect the accuracy of the network when applied for specific tasks and including a softmax function in the readout layer. We adapt several noise reduction techniques to the essential setting of classification tasks, which represent a large fraction of neural network computing. We find that these adjusted concepts are highly effective in mitigating the detrimental impact of noise.
Related papers
- Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Training neural networks with structured noise improves classification and generalization [0.0]
We show how adding structure to noisy training data can substantially improve the algorithm performance.
We also prove that the so-called Hebbian Unlearning rule coincides with the training-with-noise algorithm when noise is maximal.
arXiv Detail & Related papers (2023-02-26T22:10:23Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Stochastic resonance neurons in artificial neural networks [0.0]
We propose a new type of neural networks using resonances as an inherent part of the architecture.
We show that such a neural network is more robust against the impact of noise.
arXiv Detail & Related papers (2022-05-06T18:42:36Z) - Building Compact and Robust Deep Neural Networks with Toeplitz Matrices [93.05076144491146]
This thesis focuses on the problem of training neural networks which are compact, easy to train, reliable and robust to adversarial examples.
We leverage the properties of structured matrices from the Toeplitz family to build compact and secure neural networks.
arXiv Detail & Related papers (2021-09-02T13:58:12Z) - Understanding and mitigating noise in trained deep neural networks [0.0]
We study the propagation of noise in deep neural networks comprising noisy nonlinear neurons in trained fully connected layers.
We find that noise accumulation is generally bound, and adding additional network layers does not worsen the signal to noise ratio beyond a limit.
We identify criteria allowing engineers to design noise-resilient novel neural network hardware.
arXiv Detail & Related papers (2021-03-12T17:16:26Z) - Robust Processing-In-Memory Neural Networks via Noise-Aware
Normalization [26.270754571140735]
PIM accelerators often suffer from intrinsic noise in the physical components.
We propose a noise-agnostic method to achieve robust neural network performance against any noise setting.
arXiv Detail & Related papers (2020-07-07T06:51:28Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z) - Noisy Machines: Understanding Noisy Neural Networks and Enhancing
Robustness to Analog Hardware Errors Using Distillation [12.30062870698165]
We show how a noisy neural network has reduced learning capacity as a result of loss of mutual information between its input and output.
We propose using knowledge distillation combined with noise injection during training to achieve more noise robust networks.
Our method achieves models with as much as two times greater noise tolerance compared with the previous best attempts.
arXiv Detail & Related papers (2020-01-14T18:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.