Training neural networks with structured noise improves classification and generalization
- URL: http://arxiv.org/abs/2302.13417v6
- Date: Fri, 31 May 2024 21:01:45 GMT
- Title: Training neural networks with structured noise improves classification and generalization
- Authors: Marco Benedetti, Enrico Ventura,
- Abstract summary: We show how adding structure to noisy training data can substantially improve the algorithm performance.
We also prove that the so-called Hebbian Unlearning rule coincides with the training-with-noise algorithm when noise is maximal.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The beneficial role of noise-injection in learning is a consolidated concept in the field of artificial neural networks, suggesting that even biological systems might take advantage of similar mechanisms to optimize their performance. The training-with-noise algorithm proposed by Gardner and collaborators is an emblematic example of a noise-injection procedure in recurrent networks, which can be used to model biological neural systems. We show how adding structure to noisy training data can substantially improve the algorithm performance, allowing the network to approach perfect retrieval of the memories and wide basins of attraction, even in the scenario of maximal injected noise. We also prove that the so-called Hebbian Unlearning rule coincides with the training-with-noise algorithm when noise is maximal and data are stable fixed points of the network dynamics.
Related papers
- Impact of white noise in artificial neural networks trained for classification: performance and noise mitigation strategies [0.0]
We consider how additive and multiplicative Gaussian white noise on the neuronal level can affect the accuracy of the network.
We adapt several noise reduction techniques to the essential setting of classification tasks.
arXiv Detail & Related papers (2024-11-07T01:21:12Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Enhanced quantum state preparation via stochastic prediction of neural
network [0.8287206589886881]
In this paper, we explore an intriguing avenue for enhancing algorithm effectiveness through exploiting the knowledge blindness of neural network.
Our approach centers around a machine learning algorithm utilized for preparing arbitrary quantum states in a semiconductor double quantum dot system.
By leveraging prediction generated by the neural network, we are able to guide the optimization process to escape local optima.
arXiv Detail & Related papers (2023-07-27T09:11:53Z) - The Integrated Forward-Forward Algorithm: Integrating Forward-Forward
and Shallow Backpropagation With Local Losses [0.0]
We propose an integrated method that combines the strengths of both FFA and shallow backpropagation.
We show that training neural networks with the Integrated Forward-Forward Algorithm has the potential of generating neural networks with advantageous features like robustness.
arXiv Detail & Related papers (2023-05-22T12:10:47Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
Random functional-linked neural networks (RFLNNs) offer an alternative way of learning in deep structure.
This paper gives some insights into the properties of RFLNNs from the viewpoints of frequency domain.
We propose a method to generate a BLS network with better performance, and design an efficient algorithm for solving Poison's equation.
arXiv Detail & Related papers (2023-04-03T13:25:22Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
We propose the predictive forward-forward (PFF) algorithm for conducting credit assignment in neural systems.
We design a novel, dynamic recurrent neural system that learns a directed generative circuit jointly and simultaneously with a representation circuit.
PFF efficiently learns to propagate learning signals and updates synapses with forward passes only.
arXiv Detail & Related papers (2023-01-04T05:34:48Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
We introduce Gradient Markov Descent (SMGD), a discrete optimization method applicable to training quantized neural networks.
We provide theoretical guarantees of algorithm performance as well as encouraging numerical results.
arXiv Detail & Related papers (2020-08-25T15:48:15Z) - Robust Processing-In-Memory Neural Networks via Noise-Aware
Normalization [26.270754571140735]
PIM accelerators often suffer from intrinsic noise in the physical components.
We propose a noise-agnostic method to achieve robust neural network performance against any noise setting.
arXiv Detail & Related papers (2020-07-07T06:51:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.