Unlearning in- vs. out-of-distribution data in LLMs under gradient-based method
- URL: http://arxiv.org/abs/2411.04388v1
- Date: Thu, 07 Nov 2024 03:02:09 GMT
- Title: Unlearning in- vs. out-of-distribution data in LLMs under gradient-based method
- Authors: Teodora Baluta, Pascal Lamblin, Daniel Tarlow, Fabian Pedregosa, Gintare Karolina Dziugaite,
- Abstract summary: This work formalizes a metric to evaluate unlearning quality in generative models.
We use it to assess the trade-offs between unlearning quality and performance.
We further evaluate how example's memorization and difficulty affect unlearning under a classical gradient ascent-based approach.
- Score: 31.268301764230525
- License:
- Abstract: Machine unlearning aims to solve the problem of removing the influence of selected training examples from a learned model. Despite the increasing attention to this problem, it remains an open research question how to evaluate unlearning in large language models (LLMs), and what are the critical properties of the data to be unlearned that affect the quality and efficiency of unlearning. This work formalizes a metric to evaluate unlearning quality in generative models, and uses it to assess the trade-offs between unlearning quality and performance. We demonstrate that unlearning out-of-distribution examples requires more unlearning steps but overall presents a better trade-off overall. For in-distribution examples, however, we observe a rapid decay in performance as unlearning progresses. We further evaluate how example's memorization and difficulty affect unlearning under a classical gradient ascent-based approach.
Related papers
- Towards Understanding the Feasibility of Machine Unlearning [14.177012256360635]
We present a set of novel metrics for quantifying the difficulty of unlearning.
Specifically, we propose several metrics to assess the conditions necessary for a successful unlearning operation.
We also present a ranking mechanism to identify the most challenging samples to unlearn.
arXiv Detail & Related papers (2024-10-03T23:41:42Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Unlearnable Algorithms for In-context Learning [36.895152458323764]
In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model.
We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data.
We propose a new holistic measure of unlearning cost which accounts for varying inference costs.
arXiv Detail & Related papers (2024-02-01T16:43:04Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.