論文の概要: Statistical-Computational Trade-offs for Greedy Recursive Partitioning Estimators
- arxiv url: http://arxiv.org/abs/2411.04394v1
- Date: Thu, 07 Nov 2024 03:11:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:32.656134
- Title: Statistical-Computational Trade-offs for Greedy Recursive Partitioning Estimators
- Title(参考訳): グリーディー再帰分配推定器の統計計算トレードオフ
- Authors: Yan Shuo Tan, Jason M. Klusowski, Krishnakumar Balasubramanian,
- Abstract要約: 我々は,高次元回帰のためのグリーディアルゴリズムが局所最適点において立ち往生していることを示す。
低推定誤差を達成するために、greedyトレーニングには$exp(Omega(d))$が必要であることを示す。
また、greedyトレーニングは、O(log d)$サンプルだけで小さな推定誤差が得られることを示す。
- 参考スコア(独自算出の注目度): 23.056208049082134
- License:
- Abstract: Models based on recursive partitioning such as decision trees and their ensembles are popular for high-dimensional regression as they can potentially avoid the curse of dimensionality. Because empirical risk minimization (ERM) is computationally infeasible, these models are typically trained using greedy algorithms. Although effective in many cases, these algorithms have been empirically observed to get stuck at local optima. We explore this phenomenon in the context of learning sparse regression functions over $d$ binary features, showing that when the true regression function $f^*$ does not satisfy the so-called Merged Staircase Property (MSP), greedy training requires $\exp(\Omega(d))$ to achieve low estimation error. Conversely, when $f^*$ does satisfy MSP, greedy training can attain small estimation error with only $O(\log d)$ samples. This performance mirrors that of two-layer neural networks trained with stochastic gradient descent (SGD) in the mean-field regime, thereby establishing a head-to-head comparison between SGD-trained neural networks and greedy recursive partitioning estimators. Furthermore, ERM-trained recursive partitioning estimators achieve low estimation error with $O(\log d)$ samples irrespective of whether $f^*$ satisfies MSP, thereby demonstrating a statistical-computational trade-off for greedy training. Our proofs are based on a novel interpretation of greedy recursive partitioning using stochastic process theory and a coupling technique that may be of independent interest.
- Abstract(参考訳): 決定木やそれらのアンサンブルのような再帰的分割に基づくモデルは、次元性の呪いを避けることができるため、高次元回帰に人気がある。
経験的リスク最小化(ERM)は計算不可能であるため、これらのモデルは典型的には欲求アルゴリズムを用いて訓練される。
多くの場合は有効であるが、これらのアルゴリズムは局所的な最適点に留まるのを実証的に観察されている。
我々は、この現象を、$d$のバイナリ機能上でスパース回帰関数を学習する文脈で探求し、真の回帰関数 $f^*$ がいわゆる Merged Staircase Property (MSP) を満たさない場合、greedy training は低い推定誤差を達成するために $\exp(\Omega(d))$ を必要とすることを示す。
逆に、$f^*$ が MSP を満たすとき、greedy トレーニングは $O(\log d)$ サンプルだけで小さな推定誤差が得られる。
この性能は、平均場状態における確率勾配降下(SGD)を訓練した2層ニューラルネットワークを反映し、SGD訓練ニューラルネットワークとグリージー再帰的分割推定器の頭と頭の比較を確立する。
さらに、ERMでトレーニングされた再帰的分割推定器は、$f^*$がMSPを満たすかどうかに関わらず、$O(\log d)$サンプルを用いて低い推定誤差を達成する。
我々の証明は、確率的プロセス理論を用いた欲求再帰的パーティショニングの新たな解釈と、独立性のあるカップリング技術に基づいている。
関連論文リスト
- MGDA Converges under Generalized Smoothness, Provably [27.87166415148172]
多目的最適化(MOO)はマルチタスク学習など様々な分野で注目を集めている。
最近の研究は、理論解析を伴う効果的なアルゴリズムを提供しているが、それらは標準の$L$-smoothあるいは有界勾配仮定によって制限されている。
一般化された$ell$-smooth損失関数のより一般的で現実的なクラスについて研究し、$ell$は勾配ノルムの一般非減少関数である。
論文 参考訳(メタデータ) (2024-05-29T18:36:59Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
本稿では,円滑なベルマン作用素を持つ連続空間マルコフ決定過程(MDP)の一般クラスにおいて,$varepsilon$-optimal Policyを学習する問題を考察する。
我々のソリューションの鍵となるのは、調和解析のアイデアに基づく新しい射影技術である。
我々の結果は、連続空間 MDP における2つの人気と矛盾する視点のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-05-10T09:58:47Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
単次元モデル(Single-Index Models)は、植木構造における高次元回帰問題である。
我々は,統計的クエリ (SQ) と低遅延多項式 (LDP) フレームワークの両方において,計算効率のよいアルゴリズムが必ずしも$Omega(dkstar/2)$サンプルを必要とすることを示した。
論文 参考訳(メタデータ) (2024-03-08T18:50:19Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
ディープ非パラメトリック回帰に関する既存の理論は、入力データが低次元多様体上にある場合、ディープニューラルネットワークは本質的なデータ構造に適応できることを示した。
本稿では,$mathcalS$で表される$mathbbRd$のサブセットに入力データが集中するという緩和された仮定を導入する。
論文 参考訳(メタデータ) (2023-06-26T17:13:31Z) - Distributional Reinforcement Learning with Dual Expectile-Quantile Regression [51.87411935256015]
分布RLに対する量子レグレッションアプローチは、任意の戻り分布を柔軟かつ効果的に学習する方法を提供する。
我々は,分布保証が消えることを示し,推定分布が急速に崩壊して平均推定値が崩壊することを実証的に観察する。
提案手法は,$L$の学習効率を生かして,返却分布の予測値と量子化値とを協調的に学習し,返却分布の完全な分布を推定し,効率的な学習を可能にするものである。
論文 参考訳(メタデータ) (2023-05-26T12:30:05Z) - Generalization and Stability of Interpolating Neural Networks with
Minimal Width [37.908159361149835]
補間系における勾配によって訓練された浅層ニューラルネットワークの一般化と最適化について検討する。
トレーニング損失数は$m=Omega(log4 (n))$ニューロンとニューロンを最小化する。
m=Omega(log4 (n))$のニューロンと$Tapprox n$で、テスト損失のトレーニングを$tildeO (1/)$に制限します。
論文 参考訳(メタデータ) (2023-02-18T05:06:15Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
我々はPessimistic vAlue iteRaTionとrEward Decomposition (PARTED)という新しいオフライン強化学習アルゴリズムを提案する。
PartEDは、最小2乗ベースの報酬再分配を通じて、ステップごとのプロキシ報酬に軌道を分解し、学習したプロキシ報酬に基づいて悲観的な値を実行する。
私たちの知る限りでは、PartEDは、トラジェクティブな報酬を持つ一般のMDPにおいて、証明可能な効率のよい最初のオフラインRLアルゴリズムである。
論文 参考訳(メタデータ) (2022-06-13T19:11:22Z) - An Improved Analysis of Gradient Tracking for Decentralized Machine
Learning [34.144764431505486]
トレーニングデータが$n$エージェントに分散されるネットワーク上での分散機械学習を検討する。
エージェントの共通の目標は、すべての局所損失関数の平均を最小化するモデルを見つけることである。
ノイズのない場合、$p$を$mathcalO(p-1)$から$mathcalO(p-1)$に改善します。
論文 参考訳(メタデータ) (2022-02-08T12:58:14Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - An efficient projection neural network for $\ell_1$-regularized logistic
regression [10.517079029721257]
本稿では, $ell_$-regularized logistics regression のための単純な投影ニューラルネットワークを提案する。
提案したニューラルネットワークは、余分な補助変数や滑らかな近似を必要としない。
また、リアプノフ理論を用いて、提案したニューラルネットワークの収束について検討し、任意の初期値を持つ問題の解に収束することを示す。
論文 参考訳(メタデータ) (2021-05-12T06:13:44Z) - Convergence of Online Adaptive and Recurrent Optimization Algorithms [0.0]
我々は、機械学習で使用されるいくつかの顕著な降下アルゴリズムの局所収束を証明した。
我々は確率的視点ではなく「エルゴディック」を採用し、確率分布の代わりに経験的な時間平均で作業する。
論文 参考訳(メタデータ) (2020-05-12T09:48:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。