A Bayesian Mixture Model of Temporal Point Processes with Determinantal Point Process Prior
- URL: http://arxiv.org/abs/2411.04397v1
- Date: Thu, 07 Nov 2024 03:21:30 GMT
- Title: A Bayesian Mixture Model of Temporal Point Processes with Determinantal Point Process Prior
- Authors: Yiwei Dong, Shaoxin Ye, Yuwen Cao, Qiyu Han, Hongteng Xu, Hanfang Yang,
- Abstract summary: Asynchronous event sequence clustering aims to group similar event sequences in an unsupervised manner.
Our work provides a flexible learning framework for event sequence clustering, enabling automatic identification of the potential number of clusters.
It is applicable to a wide range of parametric temporal point processes, including neural network-based models.
- Score: 21.23523473330637
- License:
- Abstract: Asynchronous event sequence clustering aims to group similar event sequences in an unsupervised manner. Mixture models of temporal point processes have been proposed to solve this problem, but they often suffer from overfitting, leading to excessive cluster generation with a lack of diversity. To overcome these limitations, we propose a Bayesian mixture model of Temporal Point Processes with Determinantal Point Process prior (TP$^2$DP$^2$) and accordingly an efficient posterior inference algorithm based on conditional Gibbs sampling. Our work provides a flexible learning framework for event sequence clustering, enabling automatic identification of the potential number of clusters and accurate grouping of sequences with similar features. It is applicable to a wide range of parametric temporal point processes, including neural network-based models. Experimental results on both synthetic and real-world data suggest that our framework could produce moderately fewer yet more diverse mixture components, and achieve outstanding results across multiple evaluation metrics.
Related papers
- Probabilistic Modeling for Sequences of Sets in Continuous-Time [14.423456635520084]
We develop a general framework for modeling set-valued data in continuous-time.
We also develop inference methods that can use such models to answer probabilistic queries.
arXiv Detail & Related papers (2023-12-22T20:16:10Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Fuzzy clustering of ordinal time series based on two novel distances
with economic applications [0.12891210250935145]
Two novel distances between ordinal time series are introduced and used to construct fuzzy clustering procedures.
The resulting clustering algorithms are computationally efficient and able to group series generated from similar processes.
Two specific applications involving economic time series illustrate the usefulness of the proposed approaches.
arXiv Detail & Related papers (2023-04-24T16:39:22Z) - Time Series Clustering with an EM algorithm for Mixtures of Linear
Gaussian State Space Models [0.0]
We propose a novel model-based time series clustering method with mixtures of linear Gaussian state space models.
The proposed method uses a new expectation-maximization algorithm for the mixture model to estimate the model parameters.
Experiments on a simulated dataset demonstrate the effectiveness of the method in clustering, parameter estimation, and model selection.
arXiv Detail & Related papers (2022-08-25T07:41:23Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
We propose a family of algorithms for personalized federated learning with locally convex user costs.
The proposed framework is based on a generalization of convex clustering in which the differences between different users' models are penalized.
arXiv Detail & Related papers (2022-02-01T19:25:31Z) - Spatiotemporal Clustering with Neyman-Scott Processes via Connections to
Bayesian Nonparametric Mixture Models [28.121773284978406]
Neyman-Scott processes (NSPs) are point process models that generate clusters of points in time or space.
We demonstrate the potential of NSPs on a variety of applications including sequence detection in neural spike trains and event detection in document streams.
arXiv Detail & Related papers (2022-01-13T16:10:20Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
This work proposes a new ensemble method for managing multilabel classification.
The core of the proposed approach combines a set of gated recurrent units and temporal convolutional neural networks trained with variants of the Adam gradients optimization approach.
arXiv Detail & Related papers (2021-10-09T00:00:16Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.