Time Series Clustering with an EM algorithm for Mixtures of Linear
Gaussian State Space Models
- URL: http://arxiv.org/abs/2208.11907v1
- Date: Thu, 25 Aug 2022 07:41:23 GMT
- Title: Time Series Clustering with an EM algorithm for Mixtures of Linear
Gaussian State Space Models
- Authors: Ryohei Umatani, Takashi Imai, Kaoru Kawamoto, Shutaro Kunimasa
- Abstract summary: We propose a novel model-based time series clustering method with mixtures of linear Gaussian state space models.
The proposed method uses a new expectation-maximization algorithm for the mixture model to estimate the model parameters.
Experiments on a simulated dataset demonstrate the effectiveness of the method in clustering, parameter estimation, and model selection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider the task of clustering a set of individual time
series while modeling each cluster, that is, model-based time series
clustering. The task requires a parametric model with sufficient flexibility to
describe the dynamics in various time series. To address this problem, we
propose a novel model-based time series clustering method with mixtures of
linear Gaussian state space models, which have high flexibility. The proposed
method uses a new expectation-maximization algorithm for the mixture model to
estimate the model parameters, and determines the number of clusters using the
Bayesian information criterion. Experiments on a simulated dataset demonstrate
the effectiveness of the method in clustering, parameter estimation, and model
selection. The method is applied to a real dataset for which previously
proposed time series clustering methods exhibited low accuracy. Results showed
that our method produces more accurate clustering results than those obtained
using the previous methods.
Related papers
- Time Series Clustering with General State Space Models via Stochastic Variational Inference [0.0]
We propose a novel method of model-based time series clustering with mixtures of general state space models (MSSMs)
An advantage of the proposed method is that it enables the use of time series models appropriate to the specific time series.
Experiments on simulated datasets show that the proposed method is effective for clustering, parameter estimation, and estimating the number of clusters.
arXiv Detail & Related papers (2024-06-29T12:48:53Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Time series clustering based on prediction accuracy of global
forecasting models [0.0]
A novel method to perform model-based clustering of time series is proposed in this paper.
Unlike most techniques proposed in the literature, the method considers the predictive accuracy as the main element for constructing the clustering partition.
An extensive simulation study shows that our method outperforms several alternative techniques concerning both clustering effectiveness and predictive accuracy.
arXiv Detail & Related papers (2023-04-30T13:12:19Z) - Clustering based on Mixtures of Sparse Gaussian Processes [6.939768185086753]
How to cluster data using their low dimensional embedded space is still a challenging problem in machine learning.
In this article, we focus on proposing a joint formulation for both clustering and dimensionality reduction.
Our algorithm is based on a mixture of sparse Gaussian processes, which is called Sparse Gaussian Process Mixture Clustering (SGP-MIC)
arXiv Detail & Related papers (2023-03-23T20:44:36Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - K-ARMA Models for Clustering Time Series Data [4.345882429229813]
We present an approach to clustering time series data using a model-based generalization of the K-Means algorithm.
We show how the clustering algorithm can be made robust to outliers using a least-absolute deviations criteria.
We perform experiments on real data which show that our method is competitive with other existing methods for similar time series clustering tasks.
arXiv Detail & Related papers (2022-06-30T18:16:11Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
We propose a family of algorithms for personalized federated learning with locally convex user costs.
The proposed framework is based on a generalization of convex clustering in which the differences between different users' models are penalized.
arXiv Detail & Related papers (2022-02-01T19:25:31Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Vine copula mixture models and clustering for non-Gaussian data [0.0]
We propose a novel vine copula mixture model for continuous data.
We show that the model-based clustering algorithm with vine copula mixture models outperforms the other model-based clustering techniques.
arXiv Detail & Related papers (2021-02-05T16:04:26Z) - Conjoined Dirichlet Process [63.89763375457853]
We develop a novel, non-parametric probabilistic biclustering method based on Dirichlet processes to identify biclusters with strong co-occurrence in both rows and columns.
We apply our method to two different applications, text mining and gene expression analysis, and demonstrate that our method improves bicluster extraction in many settings compared to existing approaches.
arXiv Detail & Related papers (2020-02-08T19:41:23Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.