Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers
- URL: http://arxiv.org/abs/2411.04403v1
- Date: Thu, 07 Nov 2024 03:46:43 GMT
- Title: Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers
- Authors: Zhichao Geng, Dongyu Ru, Yang Yang,
- Abstract summary: inference-free sparse models lag far behind in terms of search relevance when compared to both sparse and dense siamese models.
We propose two different approaches for performance improvement. First, we introduce the IDF-aware FLOPS loss, which introduces Inverted Document Frequency (IDF) to the sparsification of representations.
We find that it mitigates the negative impact of the FLOPS regularization on search relevance, allowing the model to achieve a better balance between accuracy and efficiency.
- Score: 6.773411876899064
- License:
- Abstract: Learned sparse retrieval, which can efficiently perform retrieval through mature inverted-index engines, has garnered growing attention in recent years. Particularly, the inference-free sparse retrievers are attractive as they eliminate online model inference in the retrieval phase thereby avoids huge computational cost, offering reasonable throughput and latency. However, even the state-of-the-art (SOTA) inference-free sparse models lag far behind in terms of search relevance when compared to both sparse and dense siamese models. Towards competitive search relevance for inference-free sparse retrievers, we argue that they deserve dedicated training methods other than using same ones with siamese encoders. In this paper, we propose two different approaches for performance improvement. First, we introduce the IDF-aware FLOPS loss, which introduces Inverted Document Frequency (IDF) to the sparsification of representations. We find that it mitigates the negative impact of the FLOPS regularization on search relevance, allowing the model to achieve a better balance between accuracy and efficiency. Moreover, we propose a heterogeneous ensemble knowledge distillation framework that combines siamese dense and sparse retrievers to generate supervisory signals during the pre-training phase. The ensemble framework of dense and sparse retriever capitalizes on their strengths respectively, providing a strong upper bound for knowledge distillation. To concur the diverse feedback from heterogeneous supervisors, we normalize and then aggregate the outputs of the teacher models to eliminate score scale differences. On the BEIR benchmark, our model outperforms existing SOTA inference-free sparse model by \textbf{3.3 NDCG@10 score}. It exhibits search relevance comparable to siamese sparse retrievers and client-side latency only \textbf{1.1x that of BM25}.
Related papers
- FunnelRAG: A Coarse-to-Fine Progressive Retrieval Paradigm for RAG [22.4664221738095]
Retrieval-Augmented Generation (RAG) prevails in Large Language Models.
We propose a progressive retrieval paradigm with coarse-to-fine granularity for RAG.
arXiv Detail & Related papers (2024-10-14T08:47:21Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Boot and Switch: Alternating Distillation for Zero-Shot Dense Retrieval [50.47192086219752]
$texttABEL$ is a simple but effective unsupervised method to enhance passage retrieval in zero-shot settings.
By either fine-tuning $texttABEL$ on labelled data or integrating it with existing supervised dense retrievers, we achieve state-of-the-art results.
arXiv Detail & Related papers (2023-11-27T06:22:57Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
We introduce a novel noisy self-training framework combined with synthetic queries.
Experimental results show that our method improves consistently over existing methods.
Our method is data efficient and outperforms competitive baselines.
arXiv Detail & Related papers (2023-11-27T06:19:50Z) - Unsupervised Dense Retrieval with Relevance-Aware Contrastive
Pre-Training [81.3781338418574]
We propose relevance-aware contrastive learning.
We consistently improve the SOTA unsupervised Contriever model on the BEIR and open-domain QA retrieval benchmarks.
Our method can not only beat BM25 after further pre-training on the target corpus but also serves as a good few-shot learner.
arXiv Detail & Related papers (2023-06-05T18:20:27Z) - Bridging the Training-Inference Gap for Dense Phrase Retrieval [104.4836127502683]
Building dense retrievers requires a series of standard procedures, including training and validating neural models.
In this paper, we explore how the gap between training and inference in dense retrieval can be reduced.
We propose an efficient way of validating dense retrievers using a small subset of the entire corpus.
arXiv Detail & Related papers (2022-10-25T00:53:06Z) - Adversarial Retriever-Ranker for dense text retrieval [51.87158529880056]
We present Adversarial Retriever-Ranker (AR2), which consists of a dual-encoder retriever plus a cross-encoder ranker.
AR2 consistently and significantly outperforms existing dense retriever methods.
This includes the improvements on Natural Questions R@5 to 77.9%(+2.1%), TriviaQA R@5 to 78.2%(+1.4), and MS-MARCO MRR@10 to 39.5%(+1.3%)
arXiv Detail & Related papers (2021-10-07T16:41:15Z) - Approximate Nearest Neighbor Negative Contrastive Learning for Dense
Text Retrieval [20.62375162628628]
This paper presents Approximate nearest neighbor Negative Contrastive Estimation (ANCE), a training mechanism that constructs negatives from an Approximate Nearest Neighbor (ANN) index of the corpus.
In our experiments, ANCE boosts the BERT-Siamese DR model to outperform all competitive dense and sparse retrieval baselines.
It nearly matches the accuracy of sparse-retrieval-and-BERT-reranking using dot-product in the ANCE-learned representation space and provides almost 100x speed-up.
arXiv Detail & Related papers (2020-07-01T23:15:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.