Deep Learning Models for UAV-Assisted Bridge Inspection: A YOLO Benchmark Analysis
- URL: http://arxiv.org/abs/2411.04475v1
- Date: Thu, 07 Nov 2024 07:03:40 GMT
- Title: Deep Learning Models for UAV-Assisted Bridge Inspection: A YOLO Benchmark Analysis
- Authors: Trong-Nhan Phan, Hoang-Hai Nguyen, Thi-Thu-Hien Ha, Huy-Tan Thai, Kim-Hung Le,
- Abstract summary: We benchmark 23 models belonging to the four newest YOLO variants (YOLOv5, YOLOv6, YOLOv7, YOLOv8)
We identify YOLOv8n, YOLOv7tiny, YOLOv6m, and YOLOv6m as the models offering an optimal balance between accuracy and processing speed.
Our findings accelerate the model selection process for UAVs, enabling more efficient and reliable bridge inspections.
- Score: 0.41942958779358674
- License:
- Abstract: Visual inspections of bridges are critical to ensure their safety and identify potential failures early. This inspection process can be rapidly and accurately automated by using unmanned aerial vehicles (UAVs) integrated with deep learning models. However, choosing an appropriate model that is lightweight enough to integrate into the UAV and fulfills the strict requirements for inference time and accuracy is challenging. Therefore, our work contributes to the advancement of this model selection process by conducting a benchmark of 23 models belonging to the four newest YOLO variants (YOLOv5, YOLOv6, YOLOv7, YOLOv8) on COCO-Bridge-2021+, a dataset for bridge details detection. Through comprehensive benchmarking, we identify YOLOv8n, YOLOv7tiny, YOLOv6m, and YOLOv6m6 as the models offering an optimal balance between accuracy and processing speed, with mAP@50 scores of 0.803, 0.837, 0.853, and 0.872, and inference times of 5.3ms, 7.5ms, 14.06ms, and 39.33ms, respectively. Our findings accelerate the model selection process for UAVs, enabling more efficient and reliable bridge inspections.
Related papers
- Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors [0.0]
This study presents a benchmark analysis of various YOLO (You Only Look Once) algorithms, from YOLOv3 to the newest addition, YOLO11.
It evaluates their performance on three diverse datasets: Traffic Signs (with varying object sizes), African Wildlife (with diverse aspect ratios and at least one instance of the object per image), and Ships and Vessels (with small-sized objects of a single class)
arXiv Detail & Related papers (2024-10-31T20:45:00Z) - Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10 [0.0]
This paper presents a comprehensive workflow for road damage detection using deep learning models.
To accommodate hardware limitations, large images are cropped, and lightweight models are utilized.
The proposed approach employs multiple model architectures, including a custom YOLOv7 model with Coordinate Attention layers and a Tiny YOLOv7 model.
arXiv Detail & Related papers (2024-10-10T22:55:12Z) - Advancing Roadway Sign Detection with YOLO Models and Transfer Learning [3.7078234026046877]
We modified YOLOv5 and YOLOv8 to detect and classify different roadway signs under different illumination conditions.
For the YOLOv8 model, varying the number of epochs and batch size yields consistent MAP50 scores, ranging from 94.6% to 97.1% on the testing set.
The YOLOv5 model demonstrates competitive performance, with MAP50 scores ranging from 92.4% to 96.9%.
arXiv Detail & Related papers (2024-06-11T20:00:52Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
YOLOs have emerged as the predominant paradigm in the field of real-time object detection.
The reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs.
We introduce the holistic efficiency-accuracy driven model design strategy for YOLOs.
arXiv Detail & Related papers (2024-05-23T11:44:29Z) - An Effective Two-stage Training Paradigm Detector for Small Dataset [13.227589864946477]
The backbone of YOLOv8 is pre-trained as the encoder using the masked image modeling technique.
During the test stage, test-time augmentation (TTA) is used to enhance each model, and weighted box fusion (WBF) is implemented to further boost the performance.
With the well-designed structure, our approach has achieved 30.4% average precision from 0.50 to 0.95 on the DelftBikes test set, ranking 4th on the leaderboard.
arXiv Detail & Related papers (2023-09-11T17:43:11Z) - QD-BEV : Quantization-aware View-guided Distillation for Multi-view 3D
Object Detection [57.019527599167255]
Multi-view 3D detection based on BEV (bird-eye-view) has recently achieved significant improvements.
We show in our paper that directly applying quantization in BEV tasks will 1) make the training unstable, and 2) lead to intolerable performance degradation.
Our method QD-BEV enables a novel view-guided distillation (VGD) objective, which can stabilize the quantization-aware training (QAT) while enhancing the model performance.
arXiv Detail & Related papers (2023-08-21T07:06:49Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - Performance Analysis of YOLO-based Architectures for Vehicle Detection
from Traffic Images in Bangladesh [0.0]
We find the best-suited YOLO architecture for fast and accurate vehicle detection from traffic images in Bangladesh.
Models were trained on a dataset containing 7390 images belonging to 21 types of vehicles.
We found the YOLOV5x variant to be the best-suited model, performing better than YOLOv3 and YOLOv5s models respectively by 7 & 4 percent in mAP, and 12 & 8.5 percent in terms of Accuracy.
arXiv Detail & Related papers (2022-12-18T18:53:35Z) - Are Sample-Efficient NLP Models More Robust? [90.54786862811183]
We investigate the relationship between sample efficiency (amount of data needed to reach a given ID accuracy) and robustness (how models fare on OOD evaluation)
We find that higher sample efficiency is only correlated with better average OOD robustness on some modeling interventions and tasks, but not others.
These results suggest that general-purpose methods for improving sample efficiency are unlikely to yield universal OOD robustness improvements, since such improvements are highly dataset- and task-dependent.
arXiv Detail & Related papers (2022-10-12T17:54:59Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Workshop on Autonomous Driving at CVPR 2021: Technical Report for
Streaming Perception Challenge [57.647371468876116]
We introduce our real-time 2D object detection system for the realistic autonomous driving scenario.
Our detector is built on a newly designed YOLO model, called YOLOX.
On the Argoverse-HD dataset, our system achieves 41.0 streaming AP, which surpassed second place by 7.8/6.1 on detection-only track/fully track, respectively.
arXiv Detail & Related papers (2021-07-27T06:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.