LLM-R: A Framework for Domain-Adaptive Maintenance Scheme Generation Combining Hierarchical Agents and RAG
- URL: http://arxiv.org/abs/2411.04476v1
- Date: Thu, 07 Nov 2024 07:07:34 GMT
- Title: LLM-R: A Framework for Domain-Adaptive Maintenance Scheme Generation Combining Hierarchical Agents and RAG
- Authors: Laifa Tao, Qixuan Huang, Xianjun Wu, Weiwei Zhang, Yunlong Wu, Bin Li, Chen Lu, Xingshuo Hai,
- Abstract summary: This paper proposes a Maintenance Scheme Generation Method based on Large Language Models (LLM-R)
The proposed method includes several key innovations.
The experimental results show that the accuracy of the maintenance schemes generated by the proposed method reached 91.59%.
- Score: 7.864939415613373
- License:
- Abstract: The increasing use of smart devices has emphasized the critical role of maintenance in production activities. Interactive Electronic Technical Manuals (IETMs) are vital tools that support the maintenance of smart equipment. However, traditional IETMs face challenges such as transitioning from Graphical User Interfaces (GUIs) to natural Language User Interfaces (LUIs) and managing complex logical relationships. Additionally, they must meet the current demands for higher intelligence. This paper proposes a Maintenance Scheme Generation Method based on Large Language Models (LLM-R). The proposed method includes several key innovations: We propose the Low Rank Adaptation-Knowledge Retention (LORA-KR) loss technology to proportionally adjust mixed maintenance data for fine-tuning the LLM. This method prevents knowledge conflicts caused by mixed data, improving the model's adaptability and reasoning ability in specific maintenance domains, Besides, Hierarchical Task-Based Agent and Instruction-level Retrieval-Augmented Generation (RAG) technologies are adopted to optimize the generation steps and mitigate the phenomenon of hallucination caused by the model's Inability to access contextual information. This enhancement improves the model's flexibility and accuracy in handling known or unknown maintenance objects and maintenance scheme scenarios. To validate the proposed method's effectiveness in maintenance tasks, a maintenance scheme dataset was constructed using objects from different fields. The experimental results show that the accuracy of the maintenance schemes generated by the proposed method reached 91.59%, indicating which improvement enhances the intelligence of maintenance schemes and introduces novel technical approaches for equipment maintenance.
Related papers
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Retrieval-Augmented Instruction Tuning for Automated Process Engineering Calculations : A Tool-Chaining Problem-Solving Framework with Attributable Reflection [0.0]
We introduce a novel autonomous agent framework leveraging Retrieval-Augmented Instruction-Tuning (RAIT) to enhance open, customizable small code language models (SLMs)
By combining instruction tuned code SLMs with Retrieval-Augmented Code Generation (RACG) using external tools, the agent generates, debugs, and optimize code from natural language specifications.
Our approach addresses the limitations of the current lack of a foundational AI model for specialized process engineering tasks and offers benefits of explainability, knowledge editing, and cost-effectiveness.
arXiv Detail & Related papers (2024-08-28T15:33:47Z) - Dynamic and Adaptive Feature Generation with LLM [10.142660254703225]
We propose a dynamic and adaptive feature generation method that enhances the interpretability of the feature generation process.
Our approach broadens the applicability across various data types and tasks and draws advantages over strategic flexibility.
arXiv Detail & Related papers (2024-06-04T20:32:14Z) - DeepFMEA -- A Scalable Framework Harmonizing Process Expertise and Data-Driven PHM [0.0]
In most industrial settings, data is often limited in quantity, and its quality can be inconsistent.
To bridge this gap in practice, successfully industrialized PHM tools rely on the introduction of domain expertise as a prior.
DeepFMEA draws inspiration from the Failure Mode and Effects Analysis (FMEA) in its structured approach to the analysis of any technical system.
arXiv Detail & Related papers (2024-05-13T09:41:34Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime.
This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions.
arXiv Detail & Related papers (2023-09-29T02:27:54Z) - Intelligent Proactive Fault Tolerance at the Edge through Resource Usage
Prediction [0.7046417074932255]
We propose an Intelligent Proactive Fault Tolerance (IPFT) method that leverages the edge resource usage predictions through Recurrent Neural Networks (RNN)
In this paper, we focus on the process-faults, which are related with the inability of the infrastructure to provide Quality of Service (QoS) in acceptable ranges due to the lack of processing power.
arXiv Detail & Related papers (2023-02-09T00:42:34Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.