Anonymous Public-Key Quantum Money and Quantum Voting
- URL: http://arxiv.org/abs/2411.04482v1
- Date: Thu, 07 Nov 2024 07:21:28 GMT
- Title: Anonymous Public-Key Quantum Money and Quantum Voting
- Authors: Alper Cakan, Vipul Goyal, Takashi Yamakawa,
- Abstract summary: We develop the formal definitions of privacy for quantum money schemes.
We then construct the first public-key quantum money schemes that satisfy these security notions.
We show that the no-cloning principle, a result of quantum mechanics, allows us to construct schemes, with security guarantees that are classically impossible.
- Score: 15.80411915665245
- License:
- Abstract: Quantum information allows us to build quantum money schemes, where a bank can issue banknotes in the form of authenticatable quantum states that cannot be cloned or counterfeited. Similar to paper banknotes, in existing quantum money schemes, a banknote consists of an unclonable quantum state and a classical serial number, signed by bank. Thus, they lack one of the most fundamental properties cryptographers look for in a currency scheme: privacy. In this work, we first further develop the formal definitions of privacy for quantum money schemes. Then, we construct the first public-key quantum money schemes that satisfy these security notions. Namely, - Assuming existence of indistinguishability obfuscation (iO) and hardness of Learning with Errors (LWE), we construct a public-key quantum money scheme with anonymity against users and traceability by authorities. Since it is a policy choice whether authorities should be able to track banknotes or not, we also construct an untraceable money scheme from the same cryptographic assumptions, where no one (not even the authorities) can track banknotes. Further, we show that the no-cloning principle, a result of quantum mechanics, allows us to construct schemes, with security guarantees that are classically impossible, for a seemingly unrelated application: voting! - Assuming iO and LWE, we construct a universally verifiable quantum voting scheme with classical votes. Finally, as a technical tool, we introduce the notion of publicly rerandomizable encryption with strong correctness, where no adversary is able to produce a malicious ciphertext and a malicious randomness such that the ciphertext before and after rerandomization decrypts to different values! We believe this might be of independent interest. - Assuming LWE, we construct a (post-quantum) classical publicly rerandomizable encryption scheme with strong correctness.
Related papers
- Relating Quantum Tamper-Evident Encryption to Other Cryptographic Notions [0.0]
A quantum tamper-evident encryption scheme is a non-interactive symmetric-key encryption scheme mapping classical messages to quantum ciphertexts.
This quantum cryptographic primitive was first introduced by Gottesman in 2003.
We further our understanding of tamper-evident encryption by formally relating it to other cryptographic primitives in an information-theoretic setting.
arXiv Detail & Related papers (2024-11-05T02:20:29Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - On the (Im)plausibility of Public-Key Quantum Money from
Collision-Resistant Hash Functions [6.164147034988822]
We present the first black-box separation of quantum money and cryptographic primitives.
Specifically, we show that collision-resistant hash functions cannot be used as a black-box to construct public-key quantum money schemes.
arXiv Detail & Related papers (2023-01-23T00:44:54Z) - Another Round of Breaking and Making Quantum Money: How to Not Build It
from Lattices, and More [13.02553999059921]
We provide both negative and positive results for publicly verifiable quantum money.
We propose a framework for building quantum money and quantum lightning.
We discuss potential instantiations of our framework.
arXiv Detail & Related papers (2022-11-22T04:17:32Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Deniable Encryption in a Quantum World [6.550883342516878]
We study (sender-)deniable encryption in a setting where the encryption procedure is a quantum algorithm.
We show that quantum unlocks a fundamentally stronger form of deniable encryption, which we call perfect unexplainability.
arXiv Detail & Related papers (2021-12-30T09:45:24Z) - Franchised Quantum Money [13.772109618082382]
We introduce franchised quantum money, an alternative form of quantum money that is easier to construct.
Franchised quantum money retains the features of a useful quantum money scheme, namely unforgeability and local verification.
In franchised quantum money, every user gets a unique secret verification key, and the scheme is secure against counterfeiting and sabotage.
arXiv Detail & Related papers (2021-10-19T05:00:28Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
We introduce a quantum copy-protection scheme for a class of evasive functions known as " compute-and-compare programs"
We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM)
As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing"
arXiv Detail & Related papers (2020-09-29T08:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.