論文の概要: Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2411.04562v1
- Date: Thu, 07 Nov 2024 09:35:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:51.112934
- Title: Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning
- Title(参考訳): モデルに基づくオフライン強化学習のための制約付き潜在行動ポリシー
- Authors: Marvin Alles, Philip Becker-Ehmck, Patrick van der Smagt, Maximilian Karl,
- Abstract要約: オフラインの強化学習では、環境からの高価なフィードバックがなければ、静的なデータセットを使ってポリシーが学習される。
我々は,観察と行動の連関分布の生成モデルを学習する制約付き潜在行動ポリシー(C-LAP)を提案する。
- 参考スコア(独自算出の注目度): 5.012314384895537
- License:
- Abstract: In offline reinforcement learning, a policy is learned using a static dataset in the absence of costly feedback from the environment. In contrast to the online setting, only using static datasets poses additional challenges, such as policies generating out-of-distribution samples. Model-based offline reinforcement learning methods try to overcome these by learning a model of the underlying dynamics of the environment and using it to guide policy search. It is beneficial but, with limited datasets, errors in the model and the issue of value overestimation among out-of-distribution states can worsen performance. Current model-based methods apply some notion of conservatism to the Bellman update, often implemented using uncertainty estimation derived from model ensembles. In this paper, we propose Constrained Latent Action Policies (C-LAP) which learns a generative model of the joint distribution of observations and actions. We cast policy learning as a constrained objective to always stay within the support of the latent action distribution, and use the generative capabilities of the model to impose an implicit constraint on the generated actions. Thereby eliminating the need to use additional uncertainty penalties on the Bellman update and significantly decreasing the number of gradient steps required to learn a policy. We empirically evaluate C-LAP on the D4RL and V-D4RL benchmark, and show that C-LAP is competitive to state-of-the-art methods, especially outperforming on datasets with visual observations.
- Abstract(参考訳): オフラインの強化学習では、環境からの高価なフィードバックがなければ、静的なデータセットを使ってポリシーが学習される。
オンライン設定とは対照的に、静的データセットのみを使用すると、アウト・オブ・ディストリビューションサンプルを生成するポリシなど、さらなる課題が発生する。
モデルに基づくオフライン強化学習手法は、環境の基盤となるダイナミクスのモデルを学び、それをポリシー探索のガイドに利用することによって、これらを克服しようとする。
これは有益であるが、限られたデータセットでは、モデル内のエラーと、アウト・オブ・ディストリビューション状態における価値過大評価の問題により、パフォーマンスが悪化する。
現在のモデルベース手法は、モデルアンサンブルから導かれる不確実性推定を用いてしばしば実装されるベルマン更新に保守性の概念を適用している。
本稿では,観察と行動の連関分布の生成モデルを学習する制約付き潜在行動政策(C-LAP)を提案する。
我々は、政策学習を、常に潜伏した行動分布の支持に留まり、モデルの生成能力を用いて、生成された行動に暗黙の制約を課す制約対象として捉えた。
これにより、ベルマンのアップデートで追加の不確実性な罰則を使用する必要がなくなり、ポリシーを学ぶのに必要な勾配ステップの数が大幅に減少する。
我々は、D4RLとV-D4RLのベンチマークでC-LAPを実証的に評価し、C-LAPが最先端の手法と競合することを示す。
関連論文リスト
- SeMOPO: Learning High-quality Model and Policy from Low-quality Offline Visual Datasets [32.496818080222646]
モデルに基づくオフライン強化学習のための新しい手法を提案する。
モデルの不確かさとSeMOPOの性能バウンダリに関する理論的保証を提供する。
実験結果から,本手法はベースライン法を著しく上回ることがわかった。
論文 参考訳(メタデータ) (2024-06-13T15:16:38Z) - Diffusion Actor-Critic: Formulating Constrained Policy Iteration as Diffusion Noise Regression for Offline Reinforcement Learning [13.163511229897667]
オフライン強化学習(RL)では、価値関数の過大評価を防ぐために、配布外動作を管理する必要がある。
拡散雑音回帰問題としてクルバック・リブラー (KL) 制約ポリシーの繰り返しを定式化する拡散アクタ・クリティカル (DAC) を提案する。
提案手法はD4RLベンチマークで評価され,ほぼすべての環境において最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2024-05-31T00:41:04Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
本稿では、オフラインシーケンスモデリングとオフライン強化学習をダブルポリシー推定と組み合わせたRLアルゴリズムDPEを提案する。
D4RLベンチマークを用いて,OpenAI Gymの複数のタスクで本手法を検証した。
論文 参考訳(メタデータ) (2023-08-28T20:46:07Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
オフライン強化学習は、追加の環境相互作用なしに、事前に記録された、固定されたデータセット上でポリシーをトレーニングすることを目的としている。
我々は、最近、潜在行動空間における学習ポリシーを基礎として、生成モデルの構築に正規化フローの特別な形式を用いる。
提案手法が最近提案したアルゴリズムより優れていることを示すため,様々な移動タスクとナビゲーションタスクについて評価を行った。
論文 参考訳(メタデータ) (2022-11-20T21:57:10Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
オフラインモデルに基づく強化学習では、歴史的収集データから動的モデルを学び、学習モデルと固定データセットを用いてポリシー学習を行う。
提案手法は,本手法が期待するリターンを最小限に抑えるための,反復的なオフラインMBRLフレームワークを開発する。
提案する統一型モデル政治学習フレームワークにより、我々は、広範囲の連続制御オフライン強化学習データセット上での競合性能を実現する。
論文 参考訳(メタデータ) (2022-10-12T04:58:51Z) - Conservative Bayesian Model-Based Value Expansion for Offline Policy
Optimization [41.774837419584735]
オフライン強化学習(英語版) (RL) は、ある行動ポリシーに従って収集された固定されたデータのバッチからパフォーマンスポリシーを学習する問題に対処する。
モデルベースのアプローチは、環境のモデルを学ぶことによって、ログ化されたデータセットからより多くの学習信号を抽出できるため、特に魅力的である。
論文 参考訳(メタデータ) (2022-10-07T20:13:50Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
オフライン強化学習(RL)は、以前に収集した静的データセットを使って最適なポリシーを学ぶことを目的としている。
本稿では,条件付き拡散モデルを用いたディフュージョンQ-ラーニング(Diffusion-QL)を提案する。
本手法はD4RLベンチマークタスクの大部分において最先端の性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-08-12T09:54:11Z) - Latent-Variable Advantage-Weighted Policy Optimization for Offline RL [70.01851346635637]
オフラインの強化学習メソッドは、新しいトランジションを環境に問い合わせる必要なしに、事前にコンパイルされたデータセットから学習ポリシーを保証します。
実際には、オフラインデータセットは、しばしば異種、すなわち様々なシナリオで収集される。
より広範な政策分布を表現できる潜在変数ポリシーを活用することを提案する。
提案手法は,次回のオフライン強化学習法の性能を,異種データセット上で49%向上させる。
論文 参考訳(メタデータ) (2022-03-16T21:17:03Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
ディープニューラルネットワークのような複雑なモデルによる不確実性推定は困難であり、信頼性が低い。
我々は,サポート外状態動作の値関数を正規化するモデルベースオフラインRLアルゴリズムCOMBOを開発した。
従来のオフラインモデルフリーメソッドやモデルベースメソッドと比べて、comboは一貫してパフォーマンスが良いことが分かりました。
論文 参考訳(メタデータ) (2021-02-16T18:50:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。