A Generalisation of Voter Model: Influential Nodes and Convergence Properties
- URL: http://arxiv.org/abs/2411.04564v1
- Date: Thu, 07 Nov 2024 09:38:42 GMT
- Title: A Generalisation of Voter Model: Influential Nodes and Convergence Properties
- Authors: Abhiram Manohara, Ahad N. Zehmakan,
- Abstract summary: We introduce and study a generalisation of the voter model.
We study the problem of selecting a set of seeds blue nodes to maximise the expected number of blue nodes after some rounds.
Our experiments on real-world and synthetic graph data demonstrate that the proposed algorithm outperforms other algorithms.
- Score: 5.4327243200369555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consider an undirected graph G, representing a social network, where each node is blue or red, corresponding to positive or negative opinion on a topic. In the voter model, in discrete time rounds, each node picks a neighbour uniformly at random and adopts its colour. Despite its significant popularity, this model does not capture some fundamental real-world characteristics such as the difference in the strengths of individuals connections, individuals with neutral opinion on a topic, and individuals who are reluctant to update their opinion. To address these issues, we introduce and study a generalisation of the voter model. Motivating by campaigning strategies, we study the problem of selecting a set of seeds blue nodes to maximise the expected number of blue nodes after some rounds. We prove that the problem is NP- hard and provide a polynomial time approximation algorithm with the best possible approximation guarantee. Our experiments on real-world and synthetic graph data demonstrate that the proposed algorithm outperforms other algorithms. We also investigate the convergence properties of the model. We prove that the process could take an exponential number of rounds to converge. However, if we limit ourselves to strongly connected graphs, the convergence time is polynomial and the period (the number of states in convergence) divides the length of all cycles in the graph.
Related papers
- The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - Viral Marketing in Social Networks with Competing Products [23.48809201078124]
We provide a time approximation algorithm for selecting red seed nodes in a network.
Our experiments on various real-world and synthetic networks demonstrate that our proposed algorithm outperforms other algorithms.
In particular, we prove several tight bounds on the convergence time in terms of different graph parameters, such as the number of nodes/edges, maximum out-degree and diameter.
arXiv Detail & Related papers (2023-12-25T21:59:15Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Graph Convolutional Neural Networks with Diverse Negative Samples via
Decomposed Determinant Point Processes [21.792376993468064]
Graph convolutional networks (GCNs) have achieved great success in graph representation learning.
In this paper, we use quality-diversity decomposition in determinant point processes to obtain diverse negative samples.
We propose a new shortest-path-base method to improve computational efficiency.
arXiv Detail & Related papers (2022-12-05T06:31:31Z) - Unveiling the Sampling Density in Non-Uniform Geometric Graphs [69.93864101024639]
We consider graphs as geometric graphs: nodes are randomly sampled from an underlying metric space, and any pair of nodes is connected if their distance is less than a specified neighborhood radius.
In a social network communities can be modeled as densely sampled areas, and hubs as nodes with larger neighborhood radius.
We develop methods to estimate the unknown sampling density in a self-supervised fashion.
arXiv Detail & Related papers (2022-10-15T08:01:08Z) - Influence Maximization (IM) in Complex Networks with Limited Visibility
Using Statistical Methods [2.320417845168326]
influence literature (IM) problem is known as an NP-complete problem and does not have a solution in time.
Most of the methods proposed to improve this complexity are based on the assumption that the entire graph is visible.
This study is conducted to extend current methods with link prediction techniques to pseudo-visibility graphs.
arXiv Detail & Related papers (2022-08-28T07:55:54Z) - Walk for Learning: A Random Walk Approach for Federated Learning from
Heterogeneous Data [17.978941229970886]
We focus on Federated Learning (FL) as a canonical application.
One of the main challenges of FL is the communication bottleneck between the nodes and the parameter server.
We present an adaptive random walk learning algorithm.
arXiv Detail & Related papers (2022-06-01T19:53:24Z) - Factorizable Graph Convolutional Networks [90.59836684458905]
We introduce a novel graph convolutional network (GCN) that explicitly disentangles intertwined relations encoded in a graph.
FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs.
We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets.
arXiv Detail & Related papers (2020-10-12T03:01:40Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - Convergence and Stability of Graph Convolutional Networks on Large
Random Graphs [22.387735135790706]
We study properties of Graph Convolutional Networks (GCNs) by analyzing their behavior on standard models of random graphs.
We first study the convergence of GCNs to their continuous counterpart as the number of nodes grows.
We then analyze the stability of GCNs to small deformations of the random graph model.
arXiv Detail & Related papers (2020-06-02T18:36:19Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.