Self-Calibrated Listwise Reranking with Large Language Models
- URL: http://arxiv.org/abs/2411.04602v1
- Date: Thu, 07 Nov 2024 10:31:31 GMT
- Title: Self-Calibrated Listwise Reranking with Large Language Models
- Authors: Ruiyang Ren, Yuhao Wang, Kun Zhou, Wayne Xin Zhao, Wenjie Wang, Jing Liu, Ji-Rong Wen, Tat-Seng Chua,
- Abstract summary: Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
- Score: 137.6557607279876
- License:
- Abstract: Large language models (LLMs), with advanced linguistic capabilities, have been employed in reranking tasks through a sequence-to-sequence approach. In this paradigm, multiple passages are reranked in a listwise manner and a textual reranked permutation is generated. However, due to the limited context window of LLMs, this reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets. This not only increases computational costs but also restricts the LLM from fully capturing all the comparison information for all candidates. To address these challenges, we propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking. To achieve it, we first propose the relevance-aware listwise reranking framework, which incorporates explicit list-view relevance scores to improve reranking efficiency and enable global comparison across the entire candidate set. Second, to ensure the comparability of the computed scores, we propose self-calibrated training that uses point-view relevance assessments generated internally by the LLM itself to calibrate the list-view relevance assessments. Extensive experiments and comprehensive analysis on the BEIR benchmark and TREC Deep Learning Tracks demonstrate the effectiveness and efficiency of our proposed method.
Related papers
- Ranking Unraveled: Recipes for LLM Rankings in Head-to-Head AI Combat [7.8905223445925055]
Pairwise ranking has emerged as a new method for evaluating human preferences for large language models (LLM)
We explore the effectiveness of ranking systems for head-to-head comparisons of LLMs.
Our analysis uncovers key insights into the factors that affect ranking accuracy and efficiency.
arXiv Detail & Related papers (2024-11-19T20:16:26Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
First, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates.
Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark.
Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.
arXiv Detail & Related papers (2024-06-21T21:27:50Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Make Large Language Model a Better Ranker [20.532118635672763]
This paper introduces the large language model framework with Aligned Listwise Ranking Objectives (ALRO)
ALRO is designed to bridge the gap between the capabilities of LLMs and nuanced requirements of ranking tasks.
Our evaluative studies reveal that ALRO outperforms both existing embedding-based recommendation methods and LLM-based recommendation baselines.
arXiv Detail & Related papers (2024-03-28T07:22:16Z) - LiPO: Listwise Preference Optimization through Learning-to-Rank [62.02782819559389]
Policy can learn more effectively from a ranked list of plausible responses given the prompt.
We show that LiPO-$lambda$ can outperform DPO variants and SLiC by a clear margin on several preference alignment tasks.
arXiv Detail & Related papers (2024-02-02T20:08:10Z) - Contextual Biasing of Named-Entities with Large Language Models [12.396054621526643]
This paper studies contextual biasing with Large Language Models (LLMs)
During second-pass rescoring additional contextual information is provided to a LLM to boost Automatic Speech Recognition (ASR) performance.
We propose to leverage prompts for a LLM without fine tuning during rescoring which incorporate a biasing list and few-shot examples.
arXiv Detail & Related papers (2023-09-01T20:15:48Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
We propose Listwise Reranker with a Large Language Model (LRL), which achieves strong reranking effectiveness without using any task-specific training data.
Experiments on three TREC web search datasets demonstrate that LRL not only outperforms zero-shot pointwise methods when reranking first-stage retrieval results, but can also act as a final-stage reranker.
arXiv Detail & Related papers (2023-05-03T14:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.