TAP-VL: Text Layout-Aware Pre-training for Enriched Vision-Language Models
- URL: http://arxiv.org/abs/2411.04642v1
- Date: Thu, 07 Nov 2024 11:54:01 GMT
- Title: TAP-VL: Text Layout-Aware Pre-training for Enriched Vision-Language Models
- Authors: Jonathan Fhima, Elad Ben Avraham, Oren Nuriel, Yair Kittenplon, Roy Ganz, Aviad Aberdam, Ron Litman,
- Abstract summary: TAP-VL treats Optical Character Recognition information as a distinct modality and seamlessly integrates it into any Vision-Language (VL) model.
Experiments demonstrate consistent performance improvements when applying TAP-VL to top-performing VL models.
- Score: 11.508589810076147
- License:
- Abstract: Vision-Language (VL) models have garnered considerable research interest; however, they still face challenges in effectively handling text within images. To address this limitation, researchers have developed two approaches. The first method involves utilizing external Optical Character Recognition (OCR) tools to extract textual information from images, which is then prepended to other textual inputs. The second strategy focuses on employing extremely high-resolution images to improve text recognition capabilities. In this paper, we focus on enhancing the first strategy by introducing a novel method, named TAP-VL, which treats OCR information as a distinct modality and seamlessly integrates it into any VL model. TAP-VL employs a lightweight transformer-based OCR module to receive OCR with layout information, compressing it into a short fixed-length sequence for input into the LLM. Initially, we conduct model-agnostic pretraining of the OCR module on unlabeled documents, followed by its integration into any VL architecture through brief fine-tuning. Extensive experiments demonstrate consistent performance improvements when applying TAP-VL to top-performing VL models, across scene-text and document-based VL benchmarks.
Related papers
- Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
The task of composed image retrieval (CIR) aims to retrieve images based on the query image and the text describing the users' intent.
Existing methods have made great progress with the advanced large vision-language (VL) model in CIR task, however, they generally suffer from two main issues: lack of labeled triplets for model training and difficulty of deployment on resource-restricted environments.
We propose Image2Sentence based Asymmetric zero-shot composed image retrieval (ISA), which takes advantage of the VL model and only relies on unlabeled images for composition learning.
arXiv Detail & Related papers (2024-03-03T07:58:03Z) - VL-GPT: A Generative Pre-trained Transformer for Vision and Language
Understanding and Generation [79.02357561313785]
We introduce Vision-Language Generative Pre-trained Transformer (VL-GPT), a transformer model proficient at concurrently perceiving and generating visual and linguistic data.
VL-GPT achieves a unified pre-training approach for both image and text modalities by employing a straightforward auto-regressive objective.
arXiv Detail & Related papers (2023-12-14T18:59:43Z) - Vision-by-Language for Training-Free Compositional Image Retrieval [78.60509831598745]
Compositional Image Retrieval (CIR) aims to retrieve the relevant target image in a database.
Recent research sidesteps this need by using large-scale vision-language models (VLMs)
We propose to tackle CIR in a training-free manner via Vision-by-Language (CIReVL)
arXiv Detail & Related papers (2023-10-13T17:59:38Z) - Levenshtein OCR [20.48454415635795]
A novel scene text recognizer based on Vision-Language Transformer (VLT) is presented.
Inspired by Levenshtein Transformer in the area of NLP, the proposed method explores an alternative way for automatically transcribing textual content from cropped natural images.
arXiv Detail & Related papers (2022-09-08T06:46:50Z) - Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone [170.85076677740292]
We present FIBER (Fusion-In-the-Backbone-basedER), a new model architecture for vision-language (VL) pre-training.
Instead of having dedicated transformer layers for fusion after the uni-modal backbones, FIBER pushes multimodal fusion deep into the model.
We conduct comprehensive experiments on a wide range of VL tasks, ranging from VQA, image captioning, and retrieval, to phrase grounding, referring expression comprehension, and object detection.
arXiv Detail & Related papers (2022-06-15T16:41:29Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) has been developed to learn image descriptions from unaligned vision-language sample pairs.
Recent successes of Vision-Language Pre-Trained Models (VL-PTMs) have triggered the development of prompt-based learning.
We present in this paper a novel scheme based on prompt to train the UIC model, making best use of the powerful generalization ability.
arXiv Detail & Related papers (2022-05-26T03:13:43Z) - Unsupervised Vision-and-Language Pre-training via Retrieval-based
Multi-Granular Alignment [66.77841319057299]
We propose a novel unsupervised Vision-and-Language pre-training curriculum for non-parallel texts and images.
We first construct a weakly aligned image-text corpus via a retrieval-based approach, then apply a set of multi-granular alignment pre-training tasks.
A comprehensive ablation study shows each granularity is helpful to learn a stronger pre-trained model.
arXiv Detail & Related papers (2022-03-01T05:34:01Z) - ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and
Intra-modal Knowledge Integration [48.01536973731182]
We introduce a new vision-and-language pretraining method called ROSITA.
It integrates the cross- and intra-modal knowledge in a unified scene graph to enhance the semantic alignments.
ROSITA significantly outperforms existing state-of-the-art methods on three typical vision-and-language tasks over six benchmark datasets.
arXiv Detail & Related papers (2021-08-16T13:16:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.