AWARE Narrator and the Utilization of Large Language Models to Extract Behavioral Insights from Smartphone Sensing Data
- URL: http://arxiv.org/abs/2411.04691v1
- Date: Thu, 07 Nov 2024 13:23:57 GMT
- Title: AWARE Narrator and the Utilization of Large Language Models to Extract Behavioral Insights from Smartphone Sensing Data
- Authors: Tianyi Zhang, Miu Kojima, Simon D'Alfonso,
- Abstract summary: Smartphones facilitate the tracking of health-related behaviors and contexts, contributing significantly to digital phenotyping.
We introduce a novel approach that systematically converts smartphone-collected data into structured, chronological narratives.
We apply the framework to the data collected from university students over a week, demonstrating the potential of utilizing the narratives to summarize individual behavior.
- Score: 6.110013784860154
- License:
- Abstract: Smartphones, equipped with an array of sensors, have become valuable tools for personal sensing. Particularly in digital health, smartphones facilitate the tracking of health-related behaviors and contexts, contributing significantly to digital phenotyping, a process where data from digital interactions is analyzed to infer behaviors and assess mental health. Traditional methods process raw sensor data into information features for statistical and machine learning analyses. In this paper, we introduce a novel approach that systematically converts smartphone-collected data into structured, chronological narratives. The AWARE Narrator translates quantitative smartphone sensing data into English language descriptions, forming comprehensive narratives of an individual's activities. We apply the framework to the data collected from university students over a week, demonstrating the potential of utilizing the narratives to summarize individual behavior, and analyzing psychological states by leveraging large language models.
Related papers
- Predicting Affective States from Screen Text Sentiment [11.375704805270171]
The potential of analysing the textual content viewed on smartphones to predict affective states remains underexplored.
We employed linear regression, zero-shot, and multi-shot prompting to analyse relationships between screen text and affective states.
Our findings indicate that multi-shot prompting substantially outperforms both linear regression and zero-shot prompting.
arXiv Detail & Related papers (2024-08-23T05:25:11Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
We use Brain-Computer Interfacing technology to infer users' preferences, their attentional correlates towards visual content, and their associations with affective experience.
We link these to relevant applications, such as information retrieval, personalized steering of generative models, and crowdsourcing population estimates of affective experiences.
arXiv Detail & Related papers (2024-05-15T20:41:46Z) - Integrating Wearable Sensor Data and Self-reported Diaries for Personalized Affect Forecasting [2.36325543943271]
We propose a multimodal deep learning model for affect status forecasting.
This model combines a transformer encoder with a pre-trained language model, facilitating the integrated analysis of objective metrics and self-reported diaries.
Our results demonstrate that the proposed model achieves predictive accuracy of 82.50% for positive affect and 82.76% for negative affect, a full week in advance.
arXiv Detail & Related papers (2024-03-16T17:24:38Z) - Personality Trait Inference Via Mobile Phone Sensors: A Machine Learning
Approach [0.0]
This study provides evidence that personality can be reliably predicted from activity data collected through mobile phone sensors.
We were able to predict users' personality up to a 0.78 F1 score on a two class problem.
We show how a combination of rich behavioral data obtained with smartphone sensing and the use of machine learning techniques can help to advance personality research.
arXiv Detail & Related papers (2024-01-18T13:18:51Z) - Types of Approaches, Applications and Challenges in the Development of
Sentiment Analysis Systems [0.0]
Sentiment analysis is one of the important applications of natural language processing and machine learning.
Millions of comments are recorded daily and it creates a huge volume of unstructured text data.
arXiv Detail & Related papers (2023-03-09T15:18:34Z) - Unsupervised Neural Stylistic Text Generation using Transfer learning
and Adapters [66.17039929803933]
We propose a novel transfer learning framework which updates only $0.3%$ of model parameters to learn style specific attributes for response generation.
We learn style specific attributes from the PERSONALITY-CAPTIONS dataset.
arXiv Detail & Related papers (2022-10-07T00:09:22Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Towards Neural Numeric-To-Text Generation From Temporal Personal Health
Data [16.814550345738578]
We show that we can automatically generate high-quality natural language summaries from numeric personal health data.
Our work serves as a first step towards the ambitious goal of automatically generating novel and meaningful temporal summaries from personal health data.
arXiv Detail & Related papers (2022-07-11T21:16:48Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
We present a novel peer-to-peer Hindi conversation dataset- Vyaktitv.
It consists of high-quality audio and video recordings of the participants, with Hinglish textual transcriptions for each conversation.
The dataset also contains a rich set of socio-demographic features, like income, cultural orientation, amongst several others, for all the participants.
arXiv Detail & Related papers (2020-08-31T17:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.