Field Assessment of Force Torque Sensors for Planetary Rover Navigation
- URL: http://arxiv.org/abs/2411.04700v1
- Date: Thu, 07 Nov 2024 13:34:37 GMT
- Title: Field Assessment of Force Torque Sensors for Planetary Rover Navigation
- Authors: Levin Gerdes, Carlos Pérez del Pulgar, Raúl Castilla Arquillo, Martin Azkarate,
- Abstract summary: Proprioceptive sensors on planetary rovers serve for state estimation and for understanding terrain and locomotion performance.
Force-torque sensors are less explored for planetary navigation despite their potential to directly measure interaction forces.
This paper presents an evaluation of the performance and use cases of force-torque sensors based on data collected from a six-wheeled rover.
- Score: 1.2524536193679123
- License:
- Abstract: Proprioceptive sensors on planetary rovers serve for state estimation and for understanding terrain and locomotion performance. While inertial measurement units (IMUs) are widely used to this effect, force-torque sensors are less explored for planetary navigation despite their potential to directly measure interaction forces and provide insights into traction performance. This paper presents an evaluation of the performance and use cases of force-torque sensors based on data collected from a six-wheeled rover during tests over varying terrains, speeds, and slopes. We discuss challenges, such as sensor signal reliability and terrain response accuracy, and identify opportunities regarding the use of these sensors. The data is openly accessible and includes force-torque measurements from each of the six-wheel assemblies as well as IMU data from within the rover chassis. This paper aims to inform the design of future studies and rover upgrades, particularly in sensor integration and control algorithms, to improve navigation capabilities.
Related papers
- Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Cognitive TransFuser: Semantics-guided Transformer-based Sensor Fusion
for Improved Waypoint Prediction [38.971222477695214]
RGB-LIDAR-based multi-task feature fusion network, coined Cognitive TransFuser, augments and exceeds the baseline network by a significant margin for safer and more complete road navigation.
We validate the proposed network on the Town05 Short and Town05 Long Benchmark through extensive experiments, achieving up to 44.2 FPS real-time inference time.
arXiv Detail & Related papers (2023-08-04T03:59:10Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Framework for Quality Evaluation of Smart Roadside Infrastructure
Sensors for Automated Driving Applications [2.0502751783060003]
We present a novel approach to perform detailed quality assessment for smart roadside infrastructure sensors.
Our framework is multimodal across different sensor types and is evaluated on the DAIR-V2X dataset.
arXiv Detail & Related papers (2023-04-16T10:21:07Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Radar Voxel Fusion for 3D Object Detection [0.0]
This paper develops a low-level sensor fusion network for 3D object detection.
The radar sensor fusion proves especially beneficial in inclement conditions such as rain and night scenes.
arXiv Detail & Related papers (2021-06-26T20:34:12Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - On the Role of Sensor Fusion for Object Detection in Future Vehicular
Networks [25.838878314196375]
We evaluate how using a combination of different sensors affects the detection of the environment in which the vehicles move and operate.
The final objective is to identify the optimal setup that would minimize the amount of data to be distributed over the channel.
arXiv Detail & Related papers (2021-04-23T18:58:37Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
It is of primary importance that the resulting decisions are robust to perturbations.
Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements.
A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems.
arXiv Detail & Related papers (2020-07-14T05:25:15Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
We investigate the impact of fused LiDAR point clouds compared to single LiDAR point clouds.
The evaluation of the extracted trajectories shows that a fused infrastructure approach significantly increases the tracking results and reaches accuracies within a few centimeters.
arXiv Detail & Related papers (2020-06-22T10:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.