論文の概要: Revisiting Disparity from Dual-Pixel Images: Physics-Informed Lightweight Depth Estimation
- arxiv url: http://arxiv.org/abs/2411.04714v1
- Date: Wed, 06 Nov 2024 09:03:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:38:32.442089
- Title: Revisiting Disparity from Dual-Pixel Images: Physics-Informed Lightweight Depth Estimation
- Title(参考訳): デュアルカメラ画像からの差を再考する:物理インフォームド軽量深さ推定
- Authors: Teppei Kurita, Yuhi Kondo, Legong Sun, Takayuki Sasaki, Sho Nitta, Yasuhiro Hashimoto, Yoshinori Muramatsu, Yusuke Moriuchi,
- Abstract要約: 完成度に基づくネットワークに基づく軽量な分散度推定手法を提案する。
DP固有の相違誤差をパラメトリックにモデル化し、トレーニング中のサンプリングに使用することにより、DPのユニークな特性を取得する。
その結果,提案手法はシステム全体の規模を従来の手法の1/5に減らし,最先端の成果を得た。
- 参考スコア(独自算出の注目度): 3.6337378417255177
- License:
- Abstract: In this study, we propose a high-performance disparity (depth) estimation method using dual-pixel (DP) images with few parameters. Conventional end-to-end deep-learning methods have many parameters but do not fully exploit disparity constraints, which limits their performance. Therefore, we propose a lightweight disparity estimation method based on a completion-based network that explicitly constrains disparity and learns the physical and systemic disparity properties of DP. By modeling the DP-specific disparity error parametrically and using it for sampling during training, the network acquires the unique properties of DP and enhances robustness. This learning also allows us to use a common RGB-D dataset for training without a DP dataset, which is labor-intensive to acquire. Furthermore, we propose a non-learning-based refinement framework that efficiently handles inherent disparity expansion errors by appropriately refining the confidence map of the network output. As a result, the proposed method achieved state-of-the-art results while reducing the overall system size to 1/5 of that of the conventional method, even without using the DP dataset for training, thereby demonstrating its effectiveness. The code and dataset are available on our project site.
- Abstract(参考訳): 本研究では,パラメータの少ないデュアルピクセル(DP)画像を用いた高性能不均一(深度)推定法を提案する。
従来のエンドツーエンドのディープラーニング手法には多くのパラメータがあるが、差分制約を完全に活用していないため、性能が制限されている。
そこで本稿では,DP の物理的・体系的不均一性を明示的に制約し,その特性を学習する完全ネットワークに基づく軽量不均一性推定手法を提案する。
DP固有の相違誤差をパラメトリックにモデル化し、トレーニング中のサンプリングに使用することにより、DPのユニークな特性を取得し、堅牢性を高める。
この学習により、DPデータセットを使わずに、共通のRGB-Dデータセットをトレーニングに使用することができます。
さらに,ネットワーク出力の信頼度マップを適切に精算することにより,不均質な拡張誤差を効率的に処理する非学習ベースの改善フレームワークを提案する。
その結果,DPデータセットをトレーニングに用いることなく,システム全体の規模を従来の手法の1/5に減らし,その効果を実証した。
コードとデータセットはプロジェクトのサイトから入手可能です。
関連論文リスト
- Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
本稿では,画素ごとの深度を連続的にモデル化する手法を提案する。
提案手法の精度(MG)は,KITTI深度予測ベンチマークリーダーボードの上位に位置する。
論文 参考訳(メタデータ) (2023-03-31T16:01:03Z) - A Model-data-driven Network Embedding Multidimensional Features for
Tomographic SAR Imaging [5.489791364472879]
多次元特徴量に基づくトモSARイメージングを実現するためのモデルデータ駆動型ネットワークを提案する。
画像シーンの多次元的特徴を効果的に向上するために、2つの2次元処理モジュール(畳み込みエンコーダ-デコーダ構造)を追加します。
従来のCS-based FISTA法とDL-based gamma-Net法と比較して,提案手法は良好な画像精度を有しつつ,完全性を向上させる。
論文 参考訳(メタデータ) (2022-11-28T02:01:43Z) - Dense Depth Distillation with Out-of-Distribution Simulated Images [30.79756881887895]
単分子深度推定(MDE)のためのデータフリー知識蒸留(KD)について検討する。
KDは、訓練された教師モデルからそれを圧縮し、対象領域でのトレーニングデータを欠くことにより、現実世界の深度知覚タスクの軽量モデルを学ぶ。
提案手法は, トレーニング画像の1/6に留まらず, ベースラインKDのマージンが良好であり, 性能も若干向上していることを示す。
論文 参考訳(メタデータ) (2022-08-26T07:10:01Z) - RA-Depth: Resolution Adaptive Self-Supervised Monocular Depth Estimation [27.679479140943503]
本研究では,シーン深さのスケール不変性を学習し,自己教師付き単眼深度推定法(RA-Depth)を提案する。
RA-Depthは最先端の性能を達成し、解像度適応の優れた能力を示す。
論文 参考訳(メタデータ) (2022-07-25T08:49:59Z) - Cooperative Deep $Q$-learning Framework for Environments Providing Image
Feedback [5.607676459156789]
本稿では, 深層強化学習, サンプル非効率性, 遅い学習の2つの課題を, NN駆動学習の2つのアプローチで解決する。
特に、時間差(TD)誤差駆動学習手法を開発し、TD誤差の線形変換のセットを導入し、ディープNNの各層のパラメータを直接更新する。
提案手法は学習と収束を高速化し,バッファサイズの削減を必要とすることを示す。
論文 参考訳(メタデータ) (2021-10-28T17:12:41Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - Dual Pixel Exploration: Simultaneous Depth Estimation and Image
Restoration [77.1056200937214]
本研究では,ぼかしと深度情報をリンクするDPペアの形成について検討する。
本稿では,画像の深さを共同で推定し,復元するためのエンドツーエンドDDDNet(DPベースのDepth and De Network)を提案する。
論文 参考訳(メタデータ) (2020-12-01T06:53:57Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
本稿では,学習に基づく手法とモデルに基づく手法の両方を活用する,エンドツーエンドのトレーニング可能なアンフォールディングネットワークを提案する。
提案するネットワークは, モデルベース手法の柔軟性を継承し, 一つのモデルを用いて, 異なるスケール要因に対する, 曖昧でノイズの多い画像の超解像化を行う。
論文 参考訳(メタデータ) (2020-03-23T17:55:42Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
画像復元手法として, (i)Deep Image Prior (DIP) と (ii) バックプロジェクション (BP) の2つの手法を提案する。
提案手法はBP-DIP(BP-DIP)と呼ばれ,高いPSNR値とより優れた推論実行時間を持つ通常のDIPよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-03-11T17:09:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。