論文の概要: Taming Rectified Flow for Inversion and Editing
- arxiv url: http://arxiv.org/abs/2411.04746v1
- Date: Thu, 07 Nov 2024 14:29:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:38:31.377053
- Title: Taming Rectified Flow for Inversion and Editing
- Title(参考訳): インバージョンと編集のための整流処理
- Authors: Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li, Ying Shan,
- Abstract要約: FLUXやOpenSoraのような定流拡散変換器は、画像生成やビデオ生成の分野では例外的な性能を示した。
その堅牢な生成能力にもかかわらず、これらのモデルはしばしば不正確な逆転に悩まされ、画像やビデオ編集などの下流タスクにおける有効性を制限できる。
本稿では,修正フローODEの解法における誤差を低減し,インバージョン精度を向上させる新しいトレーニングフリーサンプリング器RF-rを提案する。
- 参考スコア(独自算出の注目度): 57.3742655030493
- License:
- Abstract: Rectified-flow-based diffusion transformers, such as FLUX and OpenSora, have demonstrated exceptional performance in the field of image and video generation. Despite their robust generative capabilities, these models often suffer from inaccurate inversion, which could further limit their effectiveness in downstream tasks such as image and video editing. To address this issue, we propose RF-Solver, a novel training-free sampler that enhances inversion precision by reducing errors in the process of solving rectified flow ODEs. Specifically, we derive the exact formulation of the rectified flow ODE and perform a high-order Taylor expansion to estimate its nonlinear components, significantly decreasing the approximation error at each timestep. Building upon RF-Solver, we further design RF-Edit, which comprises specialized sub-modules for image and video editing. By sharing self-attention layer features during the editing process, RF-Edit effectively preserves the structural information of the source image or video while achieving high-quality editing results. Our approach is compatible with any pre-trained rectified-flow-based models for image and video tasks, requiring no additional training or optimization. Extensive experiments on text-to-image generation, image & video inversion, and image & video editing demonstrate the robust performance and adaptability of our methods. Code is available at https://github.com/wangjiangshan0725/RF-Solver-Edit.
- Abstract(参考訳): FLUXやOpenSoraのような定流拡散変換器は、画像生成やビデオ生成の分野では例外的な性能を示した。
その堅牢な生成能力にもかかわらず、これらのモデルはしばしば不正確な逆転に悩まされ、画像やビデオ編集などの下流タスクにおけるその効果をさらに制限する可能性がある。
そこで本研究では,修正フローODEの解法における誤差を低減し,インバージョン精度を向上させる新しいトレーニングフリーサンプリング器RF-Solverを提案する。
具体的には、正流ODEの正確な定式化を導出し、高次テイラー展開を行い、その非線形成分を推定し、各時間ステップにおける近似誤差を著しく低減する。
RF-Solver上に構築したRF-Editは、画像とビデオの編集のための特別なサブモジュールから構成される。
編集プロセス中に自己認識層の特徴を共有することにより、RF編集は、高品質な編集結果を達成しつつ、ソース画像やビデオの構造情報を効果的に保存する。
我々のアプローチは、イメージタスクとビデオタスクのための事前トレーニング済みの修正フローベースモデルと互換性があり、追加のトレーニングや最適化は必要ありません。
テキスト・ツー・イメージ生成、画像・映像のインバージョン、画像・ビデオ編集に関する大規模な実験は、我々の手法の頑健な性能と適応性を実証している。
コードはhttps://github.com/wangjiangshan0725/RF-Solver-Editで公開されている。
関連論文リスト
- Guide-and-Rescale: Self-Guidance Mechanism for Effective Tuning-Free Real Image Editing [42.73883397041092]
本稿では,誘導機構による拡散サンプリングプロセスの修正に基づく新しい手法を提案する。
本研究では,入力画像の全体構造を保存するための自己誘導手法について検討する。
本稿では,人間の評価と定量的分析を通じて,提案手法が望ましい編集を可能にすることを示す。
論文 参考訳(メタデータ) (2024-09-02T15:21:46Z) - Zero-Shot Video Editing through Adaptive Sliding Score Distillation [51.57440923362033]
本研究は,オリジナルビデオコンテンツの直接操作を容易にする,ビデオベースのスコア蒸留の新たなパラダイムを提案する。
本稿では,グローバルとローカルの両方の動画ガイダンスを取り入れた適応スライディングスコア蒸留方式を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:33:59Z) - LightningDrag: Lightning Fast and Accurate Drag-based Image Editing Emerging from Videos [101.59710862476041]
1秒で高速なドラッグベースの画像編集を可能にするLightningDragを提案する。
従来の方法とは異なり、条件生成タスクとしてドラッグベースの編集を再定義する。
提案手法は, 精度と整合性の観点から, 従来手法よりも大幅に優れる。
論文 参考訳(メタデータ) (2024-05-22T15:14:00Z) - FreeDiff: Progressive Frequency Truncation for Image Editing with Diffusion Models [44.26371926512843]
我々は、プログレッシブな$textbfFre$qu$textbfe$ncy truncationを用いて、ユニバーサル編集タスクのための$textbfDiff$usionモデルのガイダンスを洗練するために、新しいフリーアプローチを導入する。
本手法は,様々な編集タスクや多様な画像に対して,最先端の手法で比較結果を得る。
論文 参考訳(メタデータ) (2024-04-18T04:47:28Z) - Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing [2.5602836891933074]
実際の画像を編集するための一般的な戦略は、拡散過程を反転させて元の画像のノイズ表現を得る。
拡散反転の現在の方法は、しばしば特定のテキストプロンプトに忠実で、ソースイメージによく似ている編集を生成するのに苦労する。
本稿では, DDIMサンプリング式における$eta$の役割を理論的に解析し, 編集性の向上を図った, 実画像編集のための新規かつ適応的な拡散インバージョン手法を提案する。
論文 参考訳(メタデータ) (2024-03-14T15:07:36Z) - FastVideoEdit: Leveraging Consistency Models for Efficient Text-to-Video
Editing [10.011515580084243]
既存のビデオ編集における画像生成モデルへのアプローチは、ワンショットの微調整、追加条件抽出、DDIMの逆変換といった時間を要する。
我々は、一貫性モデル(CM)にインスパイアされた効率的なゼロショットビデオ編集手法であるFastVideoEditを提案する。
本手法は,特別な分散スケジュールを用いて,ソース映像からターゲット映像への直接マッピングを可能にする。
論文 参考訳(メタデータ) (2024-03-10T17:12:01Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
大規模テキスト・ツー・イメージ(T2I)拡散モデルは、ここ数年で画像生成に革命をもたらした。
既存の拡散型画像編集における2つの弱点を正すためにDiffEditorを提案する。
本手法は,様々な精細な画像編集タスクにおいて,最先端の性能を効率的に達成することができる。
論文 参考訳(メタデータ) (2024-02-04T18:50:29Z) - Self-correcting LLM-controlled Diffusion Models [83.26605445217334]
自己補正LPM制御拡散(SLD)を導入する
SLDは、入力プロンプトから画像を生成し、プロンプトとアライメントを評価し、生成した画像の不正確性に対して自己補正を行うフレームワークである。
提案手法は, 生成数, 属性結合, 空間的関係において, 不正確な世代の大部分を補正することができる。
論文 参考訳(メタデータ) (2023-11-27T18:56:37Z) - Effective Real Image Editing with Accelerated Iterative Diffusion
Inversion [6.335245465042035]
現代の生成モデルで自然画像を編集し、操作することは依然として困難である。
逆安定性の問題に対処した既存のアプローチは、しばしば計算効率において大きなトレードオフをもたらす。
本稿では,空間および時間的複雑さの最小限のオーバーヘッドで再構成精度を大幅に向上させる,AIDIと呼ばれる高速化反復拡散インバージョン法を提案する。
論文 参考訳(メタデータ) (2023-09-10T01:23:05Z) - High-Fidelity GAN Inversion for Image Attribute Editing [61.966946442222735]
本稿では,画像固有の詳細をよく保存した属性編集を可能にする,GAN(High-fidelity Generative Adversarial Network)インバージョンフレームワークを提案する。
低ビットレートの遅延符号では、再構成された画像や編集された画像の高忠実度の詳細を保存することは困難である。
高忠実度復元のための基準として歪みマップを用いる歪みコンサルテーション手法を提案する。
論文 参考訳(メタデータ) (2021-09-14T11:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。