Taming Rectified Flow for Inversion and Editing
- URL: http://arxiv.org/abs/2411.04746v1
- Date: Thu, 07 Nov 2024 14:29:02 GMT
- Title: Taming Rectified Flow for Inversion and Editing
- Authors: Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li, Ying Shan,
- Abstract summary: Rectified-flow-based diffusion transformers, such as FLUX and OpenSora, have demonstrated exceptional performance in the field of image and video generation.
Despite their robust generative capabilities, these models often suffer from inaccurate inversion, which could limit their effectiveness in downstream tasks such as image and video editing.
We propose RF-r, a novel training-free sampler that enhances inversion precision by reducing errors in the process of solving rectified flow ODEs.
- Score: 57.3742655030493
- License:
- Abstract: Rectified-flow-based diffusion transformers, such as FLUX and OpenSora, have demonstrated exceptional performance in the field of image and video generation. Despite their robust generative capabilities, these models often suffer from inaccurate inversion, which could further limit their effectiveness in downstream tasks such as image and video editing. To address this issue, we propose RF-Solver, a novel training-free sampler that enhances inversion precision by reducing errors in the process of solving rectified flow ODEs. Specifically, we derive the exact formulation of the rectified flow ODE and perform a high-order Taylor expansion to estimate its nonlinear components, significantly decreasing the approximation error at each timestep. Building upon RF-Solver, we further design RF-Edit, which comprises specialized sub-modules for image and video editing. By sharing self-attention layer features during the editing process, RF-Edit effectively preserves the structural information of the source image or video while achieving high-quality editing results. Our approach is compatible with any pre-trained rectified-flow-based models for image and video tasks, requiring no additional training or optimization. Extensive experiments on text-to-image generation, image & video inversion, and image & video editing demonstrate the robust performance and adaptability of our methods. Code is available at https://github.com/wangjiangshan0725/RF-Solver-Edit.
Related papers
- Stable Flow: Vital Layers for Training-Free Image Editing [74.52248787189302]
Diffusion models have revolutionized the field of content synthesis and editing.
Recent models have replaced the traditional UNet architecture with the Diffusion Transformer (DiT)
We propose an automatic method to identify "vital layers" within DiT, crucial for image formation.
Next, to enable real-image editing, we introduce an improved image inversion method for flow models.
arXiv Detail & Related papers (2024-11-21T18:59:51Z) - Zero-Shot Video Editing through Adaptive Sliding Score Distillation [51.57440923362033]
This study proposes a novel paradigm of video-based score distillation, facilitating direct manipulation of original video content.
We propose an Adaptive Sliding Score Distillation strategy, which incorporates both global and local video guidance to reduce the impact of editing errors.
arXiv Detail & Related papers (2024-06-07T12:33:59Z) - LightningDrag: Lightning Fast and Accurate Drag-based Image Editing Emerging from Videos [101.59710862476041]
We present LightningDrag, a rapid approach enabling high quality drag-based image editing in 1 second.
Unlike most previous methods, we redefine drag-based editing as a conditional generation task.
Our approach can significantly outperform previous methods in terms of accuracy and consistency.
arXiv Detail & Related papers (2024-05-22T15:14:00Z) - FreeDiff: Progressive Frequency Truncation for Image Editing with Diffusion Models [44.26371926512843]
We introduce a novel free approach that employs progressive $textbfFre$qu$textbfe$ncy truncation to refine the guidance of $textbfDiff$usion models for universal editing tasks.
Our method achieves comparable results with state-of-the-art methods across a variety of editing tasks and on a diverse set of images.
arXiv Detail & Related papers (2024-04-18T04:47:28Z) - Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing [2.5602836891933074]
A commonly adopted strategy for editing real images involves inverting the diffusion process to obtain a noisy representation of the original image.
Current methods for diffusion inversion often struggle to produce edits that are both faithful to the specified text prompt and closely resemble the source image.
We introduce a novel and adaptable diffusion inversion technique for real image editing, which is grounded in a theoretical analysis of the role of $eta$ in the DDIM sampling equation for enhanced editability.
arXiv Detail & Related papers (2024-03-14T15:07:36Z) - FastVideoEdit: Leveraging Consistency Models for Efficient Text-to-Video Editing [8.907836546058086]
Existing approaches relying on image generation models for video editing suffer from time-consuming one-shot fine-tuning, additional condition extraction, or DDIM inversion.
We propose FastVideoEdit, an efficient zero-shot video editing approach inspired by Consistency Models (CMs)
Our method enables direct mapping from source video to target video with strong preservation ability utilizing a special variance schedule.
arXiv Detail & Related papers (2024-03-10T17:12:01Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
Large-scale Text-to-Image (T2I) diffusion models have revolutionized image generation over the last few years.
We propose DiffEditor to rectify two weaknesses in existing diffusion-based image editing.
Our method can efficiently achieve state-of-the-art performance on various fine-grained image editing tasks.
arXiv Detail & Related papers (2024-02-04T18:50:29Z) - Self-correcting LLM-controlled Diffusion Models [83.26605445217334]
We introduce Self-correcting LLM-controlled Diffusion (SLD)
SLD is a framework that generates an image from the input prompt, assesses its alignment with the prompt, and performs self-corrections on the inaccuracies in the generated image.
Our approach can rectify a majority of incorrect generations, particularly in generative numeracy, attribute binding, and spatial relationships.
arXiv Detail & Related papers (2023-11-27T18:56:37Z) - Effective Real Image Editing with Accelerated Iterative Diffusion
Inversion [6.335245465042035]
It is still challenging to edit and manipulate natural images with modern generative models.
Existing approaches that have tackled the problem of inversion stability often incur in significant trade-offs in computational efficiency.
We propose an Accelerated Iterative Diffusion Inversion method, dubbed AIDI, that significantly improves reconstruction accuracy with minimal additional overhead in space and time complexity.
arXiv Detail & Related papers (2023-09-10T01:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.