Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing
- URL: http://arxiv.org/abs/2403.09468v2
- Date: Mon, 15 Jul 2024 08:36:59 GMT
- Title: Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing
- Authors: Wonjun Kang, Kevin Galim, Hyung Il Koo,
- Abstract summary: A commonly adopted strategy for editing real images involves inverting the diffusion process to obtain a noisy representation of the original image.
Current methods for diffusion inversion often struggle to produce edits that are both faithful to the specified text prompt and closely resemble the source image.
We introduce a novel and adaptable diffusion inversion technique for real image editing, which is grounded in a theoretical analysis of the role of $eta$ in the DDIM sampling equation for enhanced editability.
- Score: 2.5602836891933074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have achieved remarkable success in the domain of text-guided image generation and, more recently, in text-guided image editing. A commonly adopted strategy for editing real images involves inverting the diffusion process to obtain a noisy representation of the original image, which is then denoised to achieve the desired edits. However, current methods for diffusion inversion often struggle to produce edits that are both faithful to the specified text prompt and closely resemble the source image. To overcome these limitations, we introduce a novel and adaptable diffusion inversion technique for real image editing, which is grounded in a theoretical analysis of the role of $\eta$ in the DDIM sampling equation for enhanced editability. By designing a universal diffusion inversion method with a time- and region-dependent $\eta$ function, we enable flexible control over the editing extent. Through a comprehensive series of quantitative and qualitative assessments, involving a comparison with a broad array of recent methods, we demonstrate the superiority of our approach. Our method not only sets a new benchmark in the field but also significantly outperforms existing strategies.
Related papers
- PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models [80.98455219375862]
We present the first text-based image editing approach for object parts based on pre-trained diffusion models.
Our approach is preferred by users 77-90% of the time in conducted user studies.
arXiv Detail & Related papers (2025-02-06T13:08:43Z) - EditScout: Locating Forged Regions from Diffusion-based Edited Images with Multimodal LLM [50.054404519821745]
We present a novel framework that integrates a multimodal Large Language Model for enhanced reasoning capabilities.
Our framework achieves promising results on MagicBrush, AutoSplice, and PerfBrush datasets.
Notably, our method excels on the PerfBrush dataset, a self-constructed test set featuring previously unseen types of edits.
arXiv Detail & Related papers (2024-12-05T02:05:33Z) - Task-Oriented Diffusion Inversion for High-Fidelity Text-based Editing [60.730661748555214]
We introduce textbfTask-textbfOriented textbfDiffusion textbfInversion (textbfTODInv), a novel framework that inverts and edits real images tailored to specific editing tasks.
ToDInv seamlessly integrates inversion and editing through reciprocal optimization, ensuring both high fidelity and precise editability.
arXiv Detail & Related papers (2024-08-23T22:16:34Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
We focus on a popular line of text-based editing frameworks - the edit-friendly'' DDPM-noise inversion approach.
We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength.
We propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts.
arXiv Detail & Related papers (2024-08-01T17:27:28Z) - Enhancing Text-to-Image Editing via Hybrid Mask-Informed Fusion [61.42732844499658]
This paper systematically improves the text-guided image editing techniques based on diffusion models.
We incorporate human annotation as an external knowledge to confine editing within a Mask-informed'' region.
arXiv Detail & Related papers (2024-05-24T07:53:59Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
Large-scale Text-to-Image (T2I) diffusion models have revolutionized image generation over the last few years.
We propose DiffEditor to rectify two weaknesses in existing diffusion-based image editing.
Our method can efficiently achieve state-of-the-art performance on various fine-grained image editing tasks.
arXiv Detail & Related papers (2024-02-04T18:50:29Z) - BARET : Balanced Attention based Real image Editing driven by
Target-text Inversion [36.59406959595952]
We propose a novel editing technique that only requires an input image and target text for various editing types including non-rigid edits without fine-tuning diffusion model.
Our method contains three novelties: (I) Targettext Inversion Schedule (TTIS) is designed to fine-tune the input target text embedding to achieve fast image reconstruction without image caption and acceleration of convergence; (II) Progressive Transition Scheme applies progressive linear approaches between target text embedding and its fine-tuned version to generate transition embedding for maintaining non-rigid editing capability; (III) Balanced Attention Module (BAM) balances the tradeoff between textual description and image semantics
arXiv Detail & Related papers (2023-12-09T07:18:23Z) - Direct Inversion: Boosting Diffusion-based Editing with 3 Lines of Code [19.988947272980848]
"Direct Inversion" is a novel technique achieving optimal performance of both branches with just three lines of code.
We present PIE-Bench, an editing benchmark with 700 images showcasing diverse scenes and editing types.
Compared to state-of-the-art optimization-based inversion techniques, our solution not only yields superior performance across 8 editing methods but also achieves nearly an order of speed-up.
arXiv Detail & Related papers (2023-10-02T18:01:55Z) - Prompt Tuning Inversion for Text-Driven Image Editing Using Diffusion
Models [6.34777393532937]
We propose an accurate and quick inversion technique, Prompt Tuning Inversion, for text-driven image editing.
Our proposed editing method consists of a reconstruction stage and an editing stage.
Experiments on ImageNet demonstrate the superior editing performance of our method compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2023-05-08T03:34:33Z) - Direct Inversion: Optimization-Free Text-Driven Real Image Editing with
Diffusion Models [0.0]
We propose an optimization-free and zero fine-tuning framework that applies complex and non-rigid edits to a single real image via a text prompt.
We prove our method's efficacy in producing high-quality, diverse, semantically coherent, and faithful real image edits.
arXiv Detail & Related papers (2022-11-15T01:07:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.