Soft Hoeffding Tree: A Transparent and Differentiable Model on Data Streams
- URL: http://arxiv.org/abs/2411.04812v1
- Date: Thu, 07 Nov 2024 15:49:53 GMT
- Title: Soft Hoeffding Tree: A Transparent and Differentiable Model on Data Streams
- Authors: Kirsten Köbschall, Lisa Hartung, Stefan Kramer,
- Abstract summary: Stream mining algorithms such as Hoeffding trees grow based on the incoming data stream.
We propose soft Hoeffding trees (SoHoT) as a new differentiable and transparent model for possibly infinite and changing data streams.
- Score: 2.6524539020042663
- License:
- Abstract: We propose soft Hoeffding trees (SoHoT) as a new differentiable and transparent model for possibly infinite and changing data streams. Stream mining algorithms such as Hoeffding trees grow based on the incoming data stream, but they currently lack the adaptability of end-to-end deep learning systems. End-to-end learning can be desirable if a feature representation is learned by a neural network and used in a tree, or if the outputs of trees are further processed in a deep learning model or workflow. Different from Hoeffding trees, soft trees can be integrated into such systems due to their differentiability, but are neither transparent nor explainable. Our novel model combines the extensibility and transparency of Hoeffding trees with the differentiability of soft trees. We introduce a new gating function to regulate the balance between univariate and multivariate splits in the tree. Experiments are performed on 20 data streams, comparing SoHoT to standard Hoeffding trees, Hoeffding trees with limited complexity, and soft trees applying a sparse activation function for sample routing. The results show that soft Hoeffding trees outperform Hoeffding trees in estimating class probabilities and, at the same time, maintain transparency compared to soft trees, with relatively small losses in terms of AUROC and cross-entropy. We also demonstrate how to trade off transparency against performance using a hyperparameter, obtaining univariate splits at one end of the spectrum and multivariate splits at the other.
Related papers
- Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
We argue that the current high-level dichotomy into bias- and variance-reduction prevalent in statistics is insufficient to understand tree ensembles.
We show that forests can improve upon trees by three distinct mechanisms that are usually implicitly entangled.
arXiv Detail & Related papers (2024-02-02T15:36:43Z) - ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained
Visual Categorization [56.37520969273242]
We introduce ViTree, a novel approach for fine-grained visual categorization.
By traversing the tree paths, ViTree effectively selects patches from transformer-processed features to highlight informative local regions.
This patch and path selectivity enhances model interpretability of ViTree, enabling better insights into the model's inner workings.
arXiv Detail & Related papers (2024-01-30T14:32:25Z) - Effective and Efficient Federated Tree Learning on Hybrid Data [80.31870543351918]
We propose HybridTree, a novel federated learning approach that enables federated tree learning on hybrid data.
We observe the existence of consistent split rules in trees and show that the knowledge of parties can be incorporated into the lower layers of a tree.
Our experiments demonstrate that HybridTree can achieve comparable accuracy to the centralized setting with low computational and communication overhead.
arXiv Detail & Related papers (2023-10-18T10:28:29Z) - Tree Variational Autoencoders [5.992683455757179]
We propose a new generative hierarchical clustering model that learns a flexible tree-based posterior distribution over latent variables.
TreeVAE hierarchically divides samples according to their intrinsic characteristics, shedding light on hidden structures in the data.
arXiv Detail & Related papers (2023-06-15T09:25:04Z) - Social Interpretable Tree for Pedestrian Trajectory Prediction [75.81745697967608]
We propose a tree-based method, termed as Social Interpretable Tree (SIT), to address this multi-modal prediction task.
A path in the tree from the root to leaf represents an individual possible future trajectory.
Despite the hand-crafted tree, the experimental results on ETH-UCY and Stanford Drone datasets demonstrate that our method is capable of matching or exceeding the performance of state-of-the-art methods.
arXiv Detail & Related papers (2022-05-26T12:18:44Z) - Dynamic Model Tree for Interpretable Data Stream Learning [14.37676876556672]
In this work, we revisit Model Trees for machine learning in evolving data streams.
Our novel framework, called Dynamic Model Tree, satisfies desirable consistency and minimality properties.
arXiv Detail & Related papers (2022-03-30T10:05:35Z) - Active-LATHE: An Active Learning Algorithm for Boosting the Error
Exponent for Learning Homogeneous Ising Trees [75.93186954061943]
We design and analyze an algorithm that boosts the error exponent by at least 40% when $rho$ is at least $0.8$.
Our analysis hinges on judiciously exploiting the minute but detectable statistical variation of the samples to allocate more data to parts of the graph.
arXiv Detail & Related papers (2021-10-27T10:45:21Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Uncovering Feature Interdependencies in High-Noise Environments with
Stepwise Lookahead Decision Forests [0.0]
"Stepwise lookahead" variation of random forest algorithm is presented for its ability to better uncover binary feature interdependencies.
A long-short trading strategy for copper futures is then backtested by training both greedy and lookahead random forests to predict the signs of daily price returns.
arXiv Detail & Related papers (2020-09-30T11:31:10Z) - The Tree Ensemble Layer: Differentiability meets Conditional Computation [8.40843862024745]
We introduce a new layer for neural networks composed of an ensemble of differentiable decision trees (a.k.a. soft trees)
Differentiable trees demonstrate promising results in the literature, but are typically slow in training and inference as they do not support conditional computation.
We develop specialized forward and backward propagation algorithms that exploit sparsity.
arXiv Detail & Related papers (2020-02-18T18:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.