Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics
- URL: http://arxiv.org/abs/2406.02497v1
- Date: Tue, 4 Jun 2024 17:15:25 GMT
- Title: Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics
- Authors: Spyridon Syntakas, Kostas Vlachos,
- Abstract summary: We propose a novel sampling-based ensemble neural MPC algorithm that employs the Monte-Carlo dropout technique on the learned system model.
The method aims in general at uncertain systems with complex dynamics, where models derived from first principles are hard to infer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks are lately more and more often being used in the context of data-driven control, as an approximate model of the true system dynamics. Model Predictive Control (MPC) adopts this practise leading to neural MPC strategies. This raises a question of whether the trained neural network has converged and generalized in a way that the learned model encapsulates an accurate approximation of the true dynamic model of the system, thus making it a reliable choice for model-based control, especially for disturbed and uncertain systems. To tackle that, we propose Dropout MPC, a novel sampling-based ensemble neural MPC algorithm that employs the Monte-Carlo dropout technique on the learned system model. The closed loop is based on an ensemble of predictive controllers, that are used simultaneously at each time-step for trajectory optimization. Each member of the ensemble influences the control input, based on a weighted voting scheme, thus by employing different realizations of the learned system dynamics, neural control becomes more reliable by design. An additional strength of the method is that it offers by design a way to estimate future uncertainty, leading to cautious control. While the method aims in general at uncertain systems with complex dynamics, where models derived from first principles are hard to infer, to showcase the application we utilize data gathered in the laboratory from a real mobile manipulator and employ the proposed algorithm for the navigation of the robot in simulation.
Related papers
- Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Physics-informed Neural Networks-based Model Predictive Control for
Multi-link Manipulators [0.0]
We discuss nonlinear model predictive control (NMPC) for multi-body dynamics via physics-informed machine learning methods.
We present the idea of enhancing PINNs by adding control actions and initial conditions as additional network inputs.
We present our results using our PINN-based MPC to solve a tracking problem for a complex mechanical system.
arXiv Detail & Related papers (2021-09-22T15:31:24Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
We make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles.
The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data.
To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC.
arXiv Detail & Related papers (2021-09-10T12:09:18Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - On Training and Evaluation of Neural Network Approaches for Model
Predictive Control [9.8918553325509]
This paper is a framework for training and evaluation of Model Predictive Control (MPC) implemented using constrained neural networks.
The motivation is to replace real-time optimization in safety critical feedback control systems with learnt mappings in the form of neural networks with optimization layers.
arXiv Detail & Related papers (2020-05-08T15:37:55Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.