Seeing is Deceiving: Exploitation of Visual Pathways in Multi-Modal Language Models
- URL: http://arxiv.org/abs/2411.05056v1
- Date: Thu, 07 Nov 2024 16:21:18 GMT
- Title: Seeing is Deceiving: Exploitation of Visual Pathways in Multi-Modal Language Models
- Authors: Pete Janowczyk, Linda Laurier, Ave Giulietta, Arlo Octavia, Meade Cleti,
- Abstract summary: Multi-Modal Language Models (MLLMs) have transformed artificial intelligence by combining visual and text data.
Attackers can manipulate either the visual or text inputs, or both, to make the model produce unintended or even harmful responses.
This paper reviews how visual inputs in MLLMs can be exploited by various attack strategies.
- Score: 0.0
- License:
- Abstract: Multi-Modal Language Models (MLLMs) have transformed artificial intelligence by combining visual and text data, making applications like image captioning, visual question answering, and multi-modal content creation possible. This ability to understand and work with complex information has made MLLMs useful in areas such as healthcare, autonomous systems, and digital content. However, integrating multiple types of data also creates security risks. Attackers can manipulate either the visual or text inputs, or both, to make the model produce unintended or even harmful responses. This paper reviews how visual inputs in MLLMs can be exploited by various attack strategies. We break down these attacks into categories: simple visual tweaks and cross-modal manipulations, as well as advanced strategies like VLATTACK, HADES, and Collaborative Multimodal Adversarial Attack (Co-Attack). These attacks can mislead even the most robust models while looking nearly identical to the original visuals, making them hard to detect. We also discuss the broader security risks, including threats to privacy and safety in important applications. To counter these risks, we review current defense methods like the SmoothVLM framework, pixel-wise randomization, and MirrorCheck, looking at their strengths and limitations. We also discuss new methods to make MLLMs more secure, including adaptive defenses, better evaluation tools, and security approaches that protect both visual and text data. By bringing together recent developments and identifying key areas for improvement, this review aims to support the creation of more secure and reliable multi-modal AI systems for real-world use.
Related papers
- CoCA: Regaining Safety-awareness of Multimodal Large Language Models with Constitutional Calibration [90.36429361299807]
multimodal large language models (MLLMs) have demonstrated remarkable success in engaging in conversations involving visual inputs.
The integration of visual modality has introduced a unique vulnerability: the MLLM becomes susceptible to malicious visual inputs.
We introduce a technique termed CoCA, which amplifies the safety-awareness of the MLLM by calibrating its output distribution.
arXiv Detail & Related papers (2024-09-17T17:14:41Z) - Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models [17.663550432103534]
Multimodal Large Language Models (MLLMs) extend the capacity of LLMs to understand multimodal information comprehensively.
These models are susceptible to jailbreak attacks, where malicious users can break the safety alignment of the target model and generate misleading and harmful answers.
We propose Cross-modality Information DEtectoR (CIDER), a plug-and-play jailbreaking detector designed to identify maliciously perturbed image inputs.
arXiv Detail & Related papers (2024-07-31T15:02:46Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
We propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within Large Vision-Language Models.
Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input.
An adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions.
arXiv Detail & Related papers (2024-05-28T07:13:30Z) - Safety Alignment for Vision Language Models [21.441662865727448]
We enhance the visual modality safety alignment of Vision Language Models (VLMs) by adding safety modules.
Our method boasts ease of use, high flexibility, and strong controllability, and it enhances safety while having minimal impact on the model's general performance.
arXiv Detail & Related papers (2024-05-22T12:21:27Z) - Chain of Attack: a Semantic-Driven Contextual Multi-Turn attacker for LLM [27.046944831084776]
Large language models (LLMs) have achieved remarkable performance in various natural language processing tasks.
CoA is a semantic-driven contextual multi-turn attack method that adaptively adjusts the attack policy.
We show that CoA can effectively expose the vulnerabilities of LLMs, and outperform existing attack methods.
arXiv Detail & Related papers (2024-05-09T08:15:21Z) - Unbridled Icarus: A Survey of the Potential Perils of Image Inputs in Multimodal Large Language Model Security [5.077261736366414]
The pursuit of reliable AI systems like powerful MLLMs has emerged as a pivotal area of contemporary research.
In this paper, we endeavor to demostrate the multifaceted risks associated with the incorporation of image modalities into MLLMs.
arXiv Detail & Related papers (2024-04-08T07:54:18Z) - VL-Trojan: Multimodal Instruction Backdoor Attacks against
Autoregressive Visual Language Models [65.23688155159398]
Autoregressive Visual Language Models (VLMs) showcase impressive few-shot learning capabilities in a multimodal context.
Recently, multimodal instruction tuning has been proposed to further enhance instruction-following abilities.
Adversaries can implant a backdoor by injecting poisoned samples with triggers embedded in instructions or images.
We propose a multimodal instruction backdoor attack, namely VL-Trojan.
arXiv Detail & Related papers (2024-02-21T14:54:30Z) - MM-SafetyBench: A Benchmark for Safety Evaluation of Multimodal Large Language Models [41.708401515627784]
We observe that Multimodal Large Language Models (MLLMs) can be easily compromised by query-relevant images.
We introduce MM-SafetyBench, a framework designed for conducting safety-critical evaluations of MLLMs against such image-based manipulations.
Our work underscores the need for a concerted effort to strengthen and enhance the safety measures of open-source MLLMs against potential malicious exploits.
arXiv Detail & Related papers (2023-11-29T12:49:45Z) - Adversarial Prompt Tuning for Vision-Language Models [86.5543597406173]
Adversarial Prompt Tuning (AdvPT) is a technique to enhance the adversarial robustness of image encoders in Vision-Language Models (VLMs)
We demonstrate that AdvPT improves resistance against white-box and black-box adversarial attacks and exhibits a synergistic effect when combined with existing image-processing-based defense techniques.
arXiv Detail & Related papers (2023-11-19T07:47:43Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.