Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2407.21659v4
- Date: Thu, 17 Oct 2024 03:49:20 GMT
- Title: Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models
- Authors: Yue Xu, Xiuyuan Qi, Zhan Qin, Wenjie Wang,
- Abstract summary: Multimodal Large Language Models (MLLMs) extend the capacity of LLMs to understand multimodal information comprehensively.
These models are susceptible to jailbreak attacks, where malicious users can break the safety alignment of the target model and generate misleading and harmful answers.
We propose Cross-modality Information DEtectoR (CIDER), a plug-and-play jailbreaking detector designed to identify maliciously perturbed image inputs.
- Score: 17.663550432103534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) extend the capacity of LLMs to understand multimodal information comprehensively, achieving remarkable performance in many vision-centric tasks. Despite that, recent studies have shown that these models are susceptible to jailbreak attacks, which refer to an exploitative technique where malicious users can break the safety alignment of the target model and generate misleading and harmful answers. This potential threat is caused by both the inherent vulnerabilities of LLM and the larger attack scope introduced by vision input. To enhance the security of MLLMs against jailbreak attacks, researchers have developed various defense techniques. However, these methods either require modifications to the model's internal structure or demand significant computational resources during the inference phase. Multimodal information is a double-edged sword. While it increases the risk of attacks, it also provides additional data that can enhance safeguards. Inspired by this, we propose Cross-modality Information DEtectoR (CIDER), a plug-and-play jailbreaking detector designed to identify maliciously perturbed image inputs, utilizing the cross-modal similarity between harmful queries and adversarial images. CIDER is independent of the target MLLMs and requires less computation cost. Extensive experimental results demonstrate the effectiveness and efficiency of CIDER, as well as its transferability to both white-box and black-box MLLMs.
Related papers
- Emerging Security Challenges of Large Language Models [6.151633954305939]
Large language models (LLMs) have achieved record adoption in a short period of time across many different sectors.
They are open-ended models trained on diverse data without being tailored for specific downstream tasks.
Traditional Machine Learning (ML) models are vulnerable to adversarial attacks.
arXiv Detail & Related papers (2024-12-23T14:36:37Z) - Model-Editing-Based Jailbreak against Safety-aligned Large Language Models [13.887770576598646]
Large Language Models (LLMs) have transformed numerous fields by enabling advanced natural language interactions.
This paper presents Targeted Model Editing (TME), a novel white-box approach that bypasses safety filters.
TME identifies and removes safety-critical transformations (SCTs) embedded in model matrices, enabling malicious queries to bypass restrictions.
arXiv Detail & Related papers (2024-12-11T08:44:15Z) - Seeing is Deceiving: Exploitation of Visual Pathways in Multi-Modal Language Models [0.0]
Multi-Modal Language Models (MLLMs) have transformed artificial intelligence by combining visual and text data.
Attackers can manipulate either the visual or text inputs, or both, to make the model produce unintended or even harmful responses.
This paper reviews how visual inputs in MLLMs can be exploited by various attack strategies.
arXiv Detail & Related papers (2024-11-07T16:21:18Z) - BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models [47.576957746503666]
BlackDAN is an innovative black-box attack framework with multi-objective optimization.
It generates high-quality prompts that effectively facilitate jailbreaking.
It maintains contextual relevance and minimize detectability.
arXiv Detail & Related papers (2024-10-13T11:15:38Z) - CoCA: Regaining Safety-awareness of Multimodal Large Language Models with Constitutional Calibration [90.36429361299807]
multimodal large language models (MLLMs) have demonstrated remarkable success in engaging in conversations involving visual inputs.
The integration of visual modality has introduced a unique vulnerability: the MLLM becomes susceptible to malicious visual inputs.
We introduce a technique termed CoCA, which amplifies the safety-awareness of the MLLM by calibrating its output distribution.
arXiv Detail & Related papers (2024-09-17T17:14:41Z) - $\textit{MMJ-Bench}$: A Comprehensive Study on Jailbreak Attacks and Defenses for Multimodal Large Language Models [11.02754617539271]
We introduce textitMMJ-Bench, a unified pipeline for evaluating jailbreak attacks and defense techniques for MLLMs.
We assess the effectiveness of various attack methods against SoTA MLLMs and evaluate the impact of defense mechanisms on both defense effectiveness and model utility.
arXiv Detail & Related papers (2024-08-16T00:18:23Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
Large Language Models (LLMs) have gained widespread adoption across various domains, including chatbots and auto-task completion agents.
These models are susceptible to safety vulnerabilities such as jailbreaking, prompt injection, and privacy leakage attacks.
This study investigates the impact of these modifications on LLM safety, a critical consideration for building reliable and secure AI systems.
arXiv Detail & Related papers (2024-04-05T20:31:45Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.
Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.
We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
We show that the continuous and high-dimensional nature of the visual input makes it a weak link against adversarial attacks.
We exploit visual adversarial examples to circumvent the safety guardrail of aligned LLMs with integrated vision.
Our study underscores the escalating adversarial risks associated with the pursuit of multimodality.
arXiv Detail & Related papers (2023-06-22T22:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.