Fast entangling gates for Rydberg atoms via resonant dipole-dipole interaction
- URL: http://arxiv.org/abs/2411.05073v1
- Date: Thu, 07 Nov 2024 19:00:08 GMT
- Title: Fast entangling gates for Rydberg atoms via resonant dipole-dipole interaction
- Authors: Giuliano Giudici, Stefano Veroni, Giacomo Giudice, Hannes Pichler, Johannes Zeiher,
- Abstract summary: We introduce a novel scheme for entangling gates using four atomic levels per atom: a ground state qubit and two Rydberg states.
We show that this interaction can mediate controlled-Z gates that are faster and less sensitive to Rydberg decay than state-of-the-art Rydberg gates.
- Score: 0.0
- License:
- Abstract: The advent of digital neutral-atom quantum computers relies on the development of fast and robust protocols for high-fidelity quantum operations. In this work, we introduce a novel scheme for entangling gates using four atomic levels per atom: a ground state qubit and two Rydberg states. A laser field couples the qubit to one of the two Rydberg states, while a microwave field coupling the two Rydberg states enables a resonant dipole-dipole interaction between different atoms. We show that this interaction can mediate controlled-Z gates that are faster and less sensitive to Rydberg decay than state-of-the-art Rydberg gates based on van der Waals interactions. Moreover, we systematically stabilize our protocol against interatomic distance fluctuations and analyze its performance in realistic setups with rubidium or cesium atoms. Our results open up new avenues to the use of dipolar interactions for universal quantum computation with neutral atoms.
Related papers
- Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Rabi oscillations and entanglement between two atoms interacting by the Rydberg blockade and with a quantized radiation field studied by the Jaynes-Cummings Model [0.0]
Rydberg atoms are promising building blocks for two-qubit gates and atom-light quantum interfaces.
We study the interaction between two Rydberg atoms interacting by the Rydberg blockade and a quantized radiation field.
arXiv Detail & Related papers (2024-08-28T04:16:12Z) - Interacting Circular Rydberg Atoms Trapped in Optical Tweezers [0.0]
Circular Rydberg atoms (CRAs) ideally combine long coherence times and strong interactions.
We report the measurement and characterization of the resonant dipole-dipole interaction between two CRAs.
arXiv Detail & Related papers (2024-07-04T18:24:53Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum gates with weak van der Waals interactions of neutral Rydberg
atoms [18.24045230829502]
We study a controlled-phase gate with an arbitrary phase and extend it to the controlled-NOT gate.
The gates need only three steps for coupling one Rydberg state.
They can work with very weak interactions so that well-separated qubits can be entangled.
arXiv Detail & Related papers (2022-12-13T01:55:03Z) - Ultrafast energy exchange between two single Rydberg atoms on the
nanosecond timescale [0.0]
We observe an interaction-driven energy exchange occuring in a timescale of nanoseconds, two orders of magnitude faster than in any previous work with Rydberg atoms.
This opens the path for quantum simulation and computation operating at the speed-limit set by dipole-dipole interactions with this ultrafast Rydberg platform.
arXiv Detail & Related papers (2021-11-24T07:56:52Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Realizing distance-selective interactions in a Rydberg-dressed atom
array [0.0]
Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits.
Rydberg states are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states.
Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs.
arXiv Detail & Related papers (2021-10-19T17:39:48Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.