Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit
- URL: http://arxiv.org/abs/2306.08691v1
- Date: Wed, 14 Jun 2023 18:24:51 GMT
- Title: Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit
- Authors: Nicolas Heimann, Lukas Broers, Nejira Pintul, Tobias Petersen, Koen
Sponselee, Alexander Ilin, Christoph Becker, Ludwig Mathey
- Abstract summary: We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
- Score: 55.05109484230879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate machine learning assisted design of a two-qubit gate in a
Rydberg tweezer system. Two low-energy hyperfine states in each of the atoms
represent the logical qubit and a Rydberg state acts as an auxiliary state to
induce qubit interaction. Utilizing a hybrid quantum-classical optimizer, we
generate optimal pulse sequences that implement a CNOT gate with high fidelity,
for experimentally realistic parameters and protocols, as well as realistic
limitations. We show that local control of single qubit operations is
sufficient for performing quantum computation on a large array of atoms. We
generate optimized strategies that are robust for both the strong-coupling,
blockade regime of the Rydberg states, but also for the weak-coupling limit.
Thus, we show that Rydberg-based quantum information processing in the
weak-coupling limit is a desirable approach, being robust and optimal, with
current technology.
Related papers
- Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - Robust control and optimal Rydberg states for neutral atom two-qubit
gates [0.0]
We investigate the robustness of two-qubit gates to deviations of experimental controls on a neutral atom platform utilizing Rydberg states.
We construct robust CZ gates that retain high Bell state fidelity $F > 0.999$ in the presence of significant deviations of the coupling strength to the Rydberg state.
arXiv Detail & Related papers (2022-12-20T10:53:24Z) - Hamiltonian Quantum Generative Adversarial Networks [4.806505912512235]
We propose Hamiltonian Quantum Generative Adversarial Networks (HQuGANs) to learn to generate unknown input quantum states.
We numerically demonstrate the capabilities of the proposed framework to learn various highly entangled many-body quantum states.
arXiv Detail & Related papers (2022-11-04T16:53:55Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Coupled dynamics of spin qubits in optical dipole microtraps [0.0]
We report a theoretical analysis of the physics underlying an implementation of a Rydberg two-qubit gate in such a system.
We focus on a blockade-type entangling gate and consider various decoherence processes limiting its performance in a real system.
Our methods and results may find implementation in numerical models for simulation and optimization of neutral atom based quantum processors.
arXiv Detail & Related papers (2022-05-06T17:30:49Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms [1.3124513975412255]
We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with Rydberg atoms.
We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations.
Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations.
arXiv Detail & Related papers (2020-09-08T13:11:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.