論文の概要: CHATTER: A Character Attribution Dataset for Narrative Understanding
- arxiv url: http://arxiv.org/abs/2411.05227v1
- Date: Thu, 07 Nov 2024 22:37:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:54:49.807189
- Title: CHATTER: A Character Attribution Dataset for Narrative Understanding
- Title(参考訳): CHATTER: ナラティブ理解のための文字属性データセット
- Authors: Sabyasachee Baruah, Shrikanth Narayanan,
- Abstract要約: 我々はChatterのサブセットであるChatterEvalを人間のアノテーションを用いて検証し、映画スクリプトの文字属性タスクの評価ベンチマークとして機能させる。
ChatterEvalは、言語モデルの物語理解と長文モデリング能力を評価する。
- 参考スコア(独自算出の注目度): 31.540540919042154
- License:
- Abstract: Computational narrative understanding studies the identification, description, and interaction of the elements of a narrative: characters, attributes, events, and relations. Narrative research has given considerable attention to defining and classifying character types. However, these character-type taxonomies do not generalize well because they are small, too simple, or specific to a domain. We require robust and reliable benchmarks to test whether narrative models truly understand the nuances of the character's development in the story. Our work addresses this by curating the Chatter dataset that labels whether a character portrays some attribute for 88148 character-attribute pairs, encompassing 2998 characters, 13324 attributes and 660 movies. We validate a subset of Chatter, called ChatterEval, using human annotations to serve as an evaluation benchmark for the character attribution task in movie scripts. ChatterEval assesses narrative understanding and the long-context modeling capacity of language models.
- Abstract(参考訳): 計算的物語理解(Computational narrative understanding)は、物語の要素:文字、属性、出来事、関係の識別、記述、相互作用を研究する。
ナラティブ・リサーチはキャラクターの種類の定義と分類にかなりの注意を払ってきた。
しかし、これらの文字型分類学は、小さすぎる、単純すぎる、あるいはドメインに特有なため、うまく一般化しない。
物語モデルが物語におけるキャラクターの発達のニュアンスを本当に理解しているかどうかをテストするためには、堅牢で信頼性の高いベンチマークが必要です。
我々の研究は、キャラクタが88148文字属性対の属性を表現しているかどうかをラベル付けするChatterデータセットを算出し、2998文字、13324属性、660本の映画を含む、この問題に対処する。
我々はChatterのサブセットであるChatterEvalを人間のアノテーションを用いて検証し、映画スクリプトの文字属性タスクの評価ベンチマークとして機能させる。
ChatterEvalは、言語モデルの物語理解と長文モデリング能力を評価する。
関連論文リスト
- BookWorm: A Dataset for Character Description and Analysis [59.186325346763184]
本稿では,短い事実プロファイルを生成する文字記述と,詳細な解釈を提供する文字解析という2つのタスクを定義する。
本稿では,Gutenbergプロジェクトからの書籍と,人間による記述と分析のペアリングを行うBookWormデータセットを紹介する。
その結果,検索に基づくアプローチは両タスクにおいて階層的アプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-10-14T10:55:58Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
本稿では,一貫した接地的・中核的な特徴を持つ視覚的ストーリーを予測できる最初のモデルを提案する。
我々のモデルは、広く使われているVISTベンチマークの上に構築された新しいデータセットに基づいて微調整されています。
また、物語における文字の豊かさとコア参照を測定するための新しい評価指標を提案する。
論文 参考訳(メタデータ) (2024-09-20T14:56:33Z) - Improving Quotation Attribution with Fictional Character Embeddings [11.259583037191772]
本稿では,文字のグローバルなスタイリスティックな情報をエンコードする文字埋め込みにより,人気のある引用帰属システムであるBookNLPを提案する。
提案するグローバル文字埋め込みとBookNLPの文脈情報を組み合わせることで,アナフォリックおよび暗黙的引用のための話者識別が向上することを示す。
論文 参考訳(メタデータ) (2024-06-17T09:46:35Z) - CHIRON: Rich Character Representations in Long-Form Narratives [98.273323001781]
文字のテキスト情報を整理・フィルタリングする新しい文字シートの表現であるCHIRONを提案する。
実験の結果,CHIRONは類似の要約に基づくベースラインよりも優れ,柔軟であることが判明した。
CHIRONから派生したメトリクスは、ストーリーのキャラクター中心性を自動的に推測するために使用することができ、これらのメトリクスは人間の判断と一致している。
論文 参考訳(メタデータ) (2024-06-14T17:23:57Z) - Detecting and Grounding Important Characters in Visual Stories [18.870236356616907]
本稿では,リッチな文字中心アノテーションを提供するVIST-Characterデータセットを紹介する。
このデータセットに基づいて,重要な文字の検出と,視覚的ストーリーにおける文字のグラウンド化という,2つの新しいタスクを提案する。
本研究では,分布類似性と事前学習された視覚・言語モデルに基づく,シンプルで教師なしのモデルを開発する。
論文 参考訳(メタデータ) (2023-03-30T18:24:06Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
文書を書く著者は、語彙、レジストリ、句読点、ミススペル、絵文字の使用など、テキスト内での識別情報をインプリントする。
以前の作品では、手作りのフィーチャや分類タスクを使用して著者モデルをトレーニングし、ドメイン外の著者に対するパフォーマンスの低下につながった。
セマンティクスの代わりにtextbfauthorship の埋め込みを学習するために、対照的に訓練されたモデルを提案する。
論文 参考訳(メタデータ) (2022-09-30T11:08:39Z) - "Let Your Characters Tell Their Story": A Dataset for Character-Centric
Narrative Understanding [31.803481510886378]
文芸作品の新しいデータセットLiSCUとその要約を、それらに現れる文字の記述と組み合わせて紹介する。
また、LiSCUにおける文字識別と文字記述生成という2つの新しいタスクについても紹介する。
これらの課題に適応した事前学習型言語モデルを用いた実験により,より優れた物語理解モデルの必要性が示された。
論文 参考訳(メタデータ) (2021-09-12T06:12:55Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。