ClusterGraph: a new tool for visualization and compression of multidimensional data
- URL: http://arxiv.org/abs/2411.05443v1
- Date: Fri, 08 Nov 2024 09:40:54 GMT
- Title: ClusterGraph: a new tool for visualization and compression of multidimensional data
- Authors: Paweł Dłotko, Davide Gurnari, Mathis Hallier, Anna Jurek-Loughrey,
- Abstract summary: This paper provides an additional layer on the output of any clustering algorithm.
It provides information about the global layout of clusters, obtained from the considered clustering algorithm.
- Score: 0.0
- License:
- Abstract: Understanding the global organization of complicated and high dimensional data is of primary interest for many branches of applied sciences. It is typically achieved by applying dimensionality reduction techniques mapping the considered data into lower dimensional space. This family of methods, while preserving local structures and features, often misses the global structure of the dataset. Clustering techniques are another class of methods operating on the data in the ambient space. They group together points that are similar according to a fixed similarity criteria, however unlike dimensionality reduction techniques, they do not provide information about the global organization of the data. Leveraging ideas from Topological Data Analysis, in this paper we provide an additional layer on the output of any clustering algorithm. Such data structure, ClusterGraph, provides information about the global layout of clusters, obtained from the considered clustering algorithm. Appropriate measures are provided to assess the quality and usefulness of the obtained representation. Subsequently the ClusterGraph, possibly with an appropriate structure--preserving simplification, can be visualized and used in synergy with state of the art exploratory data analysis techniques.
Related papers
- Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Generating Multidimensional Clusters With Support Lines [0.0]
We present Clugen, a modular procedure for synthetic data generation.
Cluken is open source, comprehensively unit tested and documented.
We demonstrate that Clugen is fit for use in the assessment of clustering algorithms.
arXiv Detail & Related papers (2023-01-24T22:08:24Z) - On Learning the Structure of Clusters in Graphs [3.8073142980733]
In many real-world applications, we find that the clusters have a significant high-level structure.
This is often overlooked in the design and analysis of graph clustering algorithms.
This thesis addresses the natural question of whether the structure of clusters can be learned efficiently.
arXiv Detail & Related papers (2022-12-29T15:26:19Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
We show that inferring the topological structure of a dataset before clustering can considerably enhance cluster detection.
We combine manifold learning method UMAP for inferring the topological structure with density-based clustering method DBSCAN.
arXiv Detail & Related papers (2022-07-01T15:53:39Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - HUMAP: Hierarchical Uniform Manifold Approximation and Projection [42.50219822975012]
This work presents HUMAP, a novel hierarchical dimensionality reduction technique designed to be flexible on preserving local and global structures.
We provide empirical evidence of our technique's superiority compared with current hierarchical approaches and show a case study applying HUMAP for dataset labelling.
arXiv Detail & Related papers (2021-06-14T19:27:54Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Joint Geometric and Topological Analysis of Hierarchical Datasets [7.098759778181621]
In this paper, we focus on high-dimensional data that are organized into several hierarchical datasets.
The main novelty in this work lies in the combination of two powerful data-analytic approaches: topological data analysis and geometric manifold learning.
We show that our new method gives rise to superior classification results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-04-03T13:02:00Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.