On Learning the Structure of Clusters in Graphs
- URL: http://arxiv.org/abs/2212.14345v1
- Date: Thu, 29 Dec 2022 15:26:19 GMT
- Title: On Learning the Structure of Clusters in Graphs
- Authors: Peter Macgregor
- Abstract summary: In many real-world applications, we find that the clusters have a significant high-level structure.
This is often overlooked in the design and analysis of graph clustering algorithms.
This thesis addresses the natural question of whether the structure of clusters can be learned efficiently.
- Score: 3.8073142980733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph clustering is a fundamental problem in unsupervised learning, with
numerous applications in computer science and in analysing real-world data. In
many real-world applications, we find that the clusters have a significant
high-level structure. This is often overlooked in the design and analysis of
graph clustering algorithms which make strong simplifying assumptions about the
structure of the graph. This thesis addresses the natural question of whether
the structure of clusters can be learned efficiently and describes four new
algorithmic results for learning such structure in graphs and hypergraphs.
All of the presented theoretical results are extensively evaluated on both
synthetic and real-word datasets of different domains, including image
classification and segmentation, migration networks, co-authorship networks,
and natural language processing. These experimental results demonstrate that
the newly developed algorithms are practical, effective, and immediately
applicable for learning the structure of clusters in real-world data.
Related papers
- ClusterGraph: a new tool for visualization and compression of multidimensional data [0.0]
This paper provides an additional layer on the output of any clustering algorithm.
It provides information about the global layout of clusters, obtained from the considered clustering algorithm.
arXiv Detail & Related papers (2024-11-08T09:40:54Z) - TopER: Topological Embeddings in Graph Representation Learning [8.052380377159398]
Topological Evolution Rate (TopER) is a low-dimensional embedding approach grounded in topological data analysis.
TopER simplifies a key topological approach, Persistent Homology, by calculating the evolution rate of graph substructures.
Our models achieve or surpass state-of-the-art results across molecular, biological, and social network datasets in tasks such as classification, clustering, and visualization.
arXiv Detail & Related papers (2024-10-02T17:31:33Z) - Structure-enhanced Contrastive Learning for Graph Clustering [4.6746630466993055]
Structure-enhanced Contrastive Learning (SECL) is introduced to addresses issues by leveraging inherent network structures.
SECL utilizes a cross-view contrastive learning mechanism to enhance node embeddings without elaborate data augmentations.
Extensive experiments on six datasets confirm SECL's superiority over current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-19T08:39:08Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
This paper focuses on learning representation on the whole graph level in an unsupervised manner.
We propose a novel framework called Structure Knowledge Refinement (SKR) which uses data structure to determine the probability of whether a pair is positive or negative.
arXiv Detail & Related papers (2024-01-05T09:05:33Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
Graph structure learning allows refining the input graph by adding missing links and removing spurious connections.
Previous endeavors in graph structure learning have predominantly centered around supervised settings.
We propose a novel method called textbfhomophily-enhanced structure textbflearning for graph clustering (HoLe)
arXiv Detail & Related papers (2023-08-10T02:53:30Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
We propose a unified framework called Local-instance and Global-semantic Learning (GraphLoG) for self-supervised whole-graph representation learning.
Besides preserving the local similarities, GraphLoG introduces the hierarchical prototypes to capture the global semantic clusters.
An efficient online expectation-maximization (EM) algorithm is further developed for learning the model.
arXiv Detail & Related papers (2021-06-08T05:25:38Z) - Higher-Order Spectral Clustering of Directed Graphs [8.997952791113232]
Clustering is an important topic in algorithms, and has a number of applications in machine learning, computer vision, statistics, and several other research disciplines.
We present a nearly-linear time algorithm for digraph clustering, and show that our proposed algorithm can be implemented in sublinear time under reasonable assumptions.
arXiv Detail & Related papers (2020-11-10T13:06:37Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.