Supporting Automated Fact-checking across Topics: Similarity-driven Gradual Topic Learning for Claim Detection
- URL: http://arxiv.org/abs/2411.05460v1
- Date: Fri, 08 Nov 2024 10:24:00 GMT
- Title: Supporting Automated Fact-checking across Topics: Similarity-driven Gradual Topic Learning for Claim Detection
- Authors: Amani S. Abumansour, Arkaitz Zubiaga,
- Abstract summary: We propose a domain-adaptation framework for check-worthy claims detection across topics for the Arabic language.
We propose the Gradual Topic Learning (GTL) model, which builds an ability to learning gradually and emphasizes the check-worthy claims for the target topic.
In addition, we introduce the Similarity-driven Gradual Topic Learning (SGTL) model that synthesizes gradual learning with a similarity-based strategy for the target topic.
- Score: 10.80303881266859
- License:
- Abstract: Selecting check-worthy claims for fact-checking is considered a crucial part of expediting the fact-checking process by filtering out and ranking the check-worthy claims for being validated among the impressive amount of claims could be found online. The check-worthy claim detection task, however, becomes more challenging when the model needs to deal with new topics that differ from those seen earlier. In this study, we propose a domain-adaptation framework for check-worthy claims detection across topics for the Arabic language to adopt a new topic, mimicking a real-life scenario of the daily emergence of events worldwide. We propose the Gradual Topic Learning (GTL) model, which builds an ability to learning gradually and emphasizes the check-worthy claims for the target topic during several stages of the learning process. In addition, we introduce the Similarity-driven Gradual Topic Learning (SGTL) model that synthesizes gradual learning with a similarity-based strategy for the target topic. Our experiments demonstrate the effectiveness of our proposed model, showing an overall tendency for improving performance over the state-of-the-art baseline across 11 out of the 14 topics under study.
Related papers
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.
Models may behave unreliably due to poorly explored failure modes.
causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - CSTA: Spatial-Temporal Causal Adaptive Learning for Exemplar-Free Video Class-Incremental Learning [62.69917996026769]
A class-incremental learning task requires learning and preserving both spatial appearance and temporal action involvement.
We propose a framework that equips separate adapters to learn new class patterns, accommodating the incremental information requirements unique to each class.
A causal compensation mechanism is proposed to reduce the conflicts during increment and memorization for between different types of information.
arXiv Detail & Related papers (2025-01-13T11:34:55Z) - Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
State-of-the-art approaches usually involve fine-tuning models on large annotated datasets, which are costly to produce.
We propose and release a qualitative and versatile few-shot learning methodology as a common paradigm for any claim-based textual classification task.
We illustrate this methodology in the context of three tasks: climate change contrarianism detection, topic/stance classification and depression-relates symptoms detection.
arXiv Detail & Related papers (2024-05-09T12:03:38Z) - Understanding Retrieval-Augmented Task Adaptation for Vision-Language Models [29.75562085178755]
We present a systematic study to understand the roles of key components in retrieval-augmented adaptation.
We unveil new insights on uni-modal and cross-modal retrieval and highlight the critical role of logit ensemble for effective adaptation.
arXiv Detail & Related papers (2024-05-02T16:59:05Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Topic-Selective Graph Network for Topic-Focused Summarization [0.0]
We propose a topic-arc recognition objective and topic-selective graph network.
First, the topic-arc recognition objective is used to model training, which endows the capability to discriminate topics for the model.
The topic-selective graph network can conduct topic-guided cross-interaction on sentences based on the results of topic-arc recognition.
arXiv Detail & Related papers (2023-02-25T15:56:06Z) - Check-worthy Claim Detection across Topics for Automated Fact-checking [21.723689314962233]
We assess and quantify the challenge of detecting check-worthy claims for new, unseen topics.
We propose the AraCWA model to mitigate the performance deterioration when detecting check-worthy claims across topics.
arXiv Detail & Related papers (2022-12-16T14:54:56Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
We investigate the reason behind the surprising adversarial brittleness of scoring models.
Our results indicate that autoscoring models, despite getting trained as "end-to-end" models, behave like bag-of-words models.
We propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies.
arXiv Detail & Related papers (2021-09-24T03:49:38Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget.
We conduct an empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework.
We also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance.
arXiv Detail & Related papers (2021-01-20T13:59:25Z) - Dialogue Response Selection with Hierarchical Curriculum Learning [52.3318584971562]
We study the learning of a matching model for dialogue response selection.
Motivated by the recent finding that random negatives are often too trivial to train a reliable model, we propose a hierarchical curriculum learning framework.
arXiv Detail & Related papers (2020-12-29T14:06:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.