An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking
- URL: http://arxiv.org/abs/2411.05508v2
- Date: Tue, 12 Nov 2024 15:36:04 GMT
- Title: An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking
- Authors: Zijian Chen, Ronak Pradeep, Jimmy Lin,
- Abstract summary: FIRST is a novel approach that integrates a learning-to-rank objective and leveraging the logits of only the first generated token.
We extend the evaluation of FIRST to the TREC Deep Learning datasets (DL19-22), validating its robustness across diverse domains.
Our experiments confirm that fast reranking with single-token logits does not compromise out-of-domain reranking quality.
- Score: 50.81324768683995
- License:
- Abstract: Recent advances have demonstrated that large language models (LLMs) excel as listwise rerankers, but their high computational demands remain a barrier to widespread adoption. Further, the traditional language modeling (LM) objective is not ideally suited for reranking tasks. FIRST is a novel approach that addresses these challenges by integrating a learning-to-rank objective and leveraging the logits of only the first generated token, thereby significantly reducing inference latency compared to traditional LLM rerankers. In this study, we extend the evaluation of FIRST to the TREC Deep Learning datasets (DL19-22), validating its robustness across diverse domains. We investigate the influence of different first-stage retrievers on FIRST rerankers, observing diminishing returns and patterns consistent with traditional LLM rerankers. Through applying the FIRST objective to a broader range of backbone models, we achieve effectiveness surpassing the original implementation. Our experiments confirm that fast reranking with single-token logits does not compromise out-of-domain reranking quality. To better quantify the computational savings in the original study, we measure and compare latency to find a 21%-42% gain across various models and benchmarks. Moreover, while LM training implicitly improves zero-shot single-token reranking, our experiments also raise questions about whether LM pre-training may hinder subsequent fine-tuning with the FIRST objective. These findings pave the way for more efficient and effective listwise reranking in future applications.
Related papers
- LLMs are Biased Evaluators But Not Biased for Retrieval Augmented Generation [28.61326111959728]
Large language models (LLMs) exhibit significant biases in evaluation tasks, particularly in preferentially rating and favoring self-generated content.
Our study addresses this knowledge gap by simulating two critical phases of the retrieval-augmented generation (RAG) framework.
Contrary to previous findings, our results reveal no significant self-preference effect in RAG frameworks.
arXiv Detail & Related papers (2024-10-28T08:32:09Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
First, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates.
Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark.
Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.
arXiv Detail & Related papers (2024-06-21T21:27:50Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Simple and Scalable Strategies to Continually Pre-train Large Language Models [20.643648785602462]
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to start the process over again once new data becomes available.
We show that a simple and scalable combination of learning rate re-warming, LR re-decaying, and replay of previous data is sufficient to match the performance of fully re-training from scratch.
arXiv Detail & Related papers (2024-03-13T17:58:57Z) - Mitigating the Learning Bias towards Repetition by Self-Contrastive
Training for Open-Ended Generation [92.42032403795879]
We show that pretrained language models (LMs) such as GPT2 still tend to generate repetitive texts.
We attribute their overestimation of token-level repetition probabilities to the learning bias.
We find that LMs use longer-range dependencies to predict repetitive tokens than non-repetitive ones, which may be the cause of sentence-level repetition loops.
arXiv Detail & Related papers (2023-07-04T07:53:55Z) - MRHER: Model-based Relay Hindsight Experience Replay for Sequential Object Manipulation Tasks with Sparse Rewards [11.79027801942033]
We propose a novel model-based RL framework called Model-based Relay Hindsight Experience Replay (MRHER)
MRHER breaks down a continuous task into subtasks with increasing complexity and utilizes the previous subtask to guide the learning of the subsequent one.
We show that MRHER exhibits state-of-the-art sample efficiency in benchmark tasks, outperforming RHER by 13.79% and 14.29%.
arXiv Detail & Related papers (2023-06-28T09:51:25Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.