Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems via Reinforcement Learning
- URL: http://arxiv.org/abs/2503.24289v1
- Date: Mon, 31 Mar 2025 16:36:00 GMT
- Title: Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems via Reinforcement Learning
- Authors: Jiacheng Lin, Tian Wang, Kun Qian,
- Abstract summary: Rec-R1 bridges large language models (LLMs) with recommendation systems through closed-loop optimization.<n>Unlike prompting and supervised fine-tuning (SFT), Rec-R1 directly optimize LLM generation using feedback from a fixed black-box recommendation model.
- Score: 6.44608398856033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Rec-R1, a general reinforcement learning framework that bridges large language models (LLMs) with recommendation systems through closed-loop optimization. Unlike prompting and supervised fine-tuning (SFT), Rec-R1 directly optimizes LLM generation using feedback from a fixed black-box recommendation model, without relying on synthetic SFT data from proprietary models such as GPT-4o. This avoids the substantial cost and effort required for data distillation. To verify the effectiveness of Rec-R1, we evaluate it on two representative tasks: product search and sequential recommendation. Experimental results demonstrate that Rec-R1 not only consistently outperforms prompting- and SFT-based methods, but also achieves significant gains over strong discriminative baselines, even when used with simple retrievers such as BM25. Moreover, Rec-R1 preserves the general-purpose capabilities of the LLM, unlike SFT, which often impairs instruction-following and reasoning. These findings suggest Rec-R1 as a promising foundation for continual task-specific adaptation without catastrophic forgetting.
Related papers
- A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce [68.99924691391048]
We revisit GRPO from a reinforce-like algorithm perspective and analyze its core components.
We find that a simple rejection sampling baseline, RAFT, yields competitive performance than GRPO and PPO.
Motivated by this insight, we propose Reinforce-Rej, a minimal extension of policy gradient that filters both entirely incorrect and entirely correct samples.
arXiv Detail & Related papers (2025-04-15T16:15:02Z) - Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.
Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.
We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
arXiv Detail & Related papers (2025-04-07T15:27:37Z) - Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning [76.50690734636477]
We introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task.<n>Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries.
arXiv Detail & Related papers (2025-03-08T03:14:26Z) - Benchmarking LLMs in Recommendation Tasks: A Comparative Evaluation with Conventional Recommenders [27.273217543282215]
We introduce RecBench, which evaluates two primary recommendation tasks, i.e., click-through rate prediction (CTR) and sequential recommendation (SeqRec)<n>Our experiments cover up to 17 large models and are conducted across five diverse datasets from fashion, news, video, books, and music domains.<n>Our findings indicate that LLM-based recommenders outperform conventional recommenders, achieving up to a 5% AUC improvement in the CTR scenario and up to a 170% NDCG@10 improvement in the SeqRec scenario.
arXiv Detail & Related papers (2025-03-07T15:05:23Z) - All Roads Lead to Likelihood: The Value of Reinforcement Learning in Fine-Tuning [40.93098780862429]
We show that the strongest results in foundation model fine-tuning (FT) are achieved via a relatively complex, two-stage training procedure.<n>One first trains a reward model (RM) on some dataset (e.g. human preferences) before using it to provide online feedback as part of a downstream reinforcement learning procedure.<n>We find the most support for the explanation that on problems with a generation-verification gap, the combination of the ease of learning the relatively simple RM from the preference data, and the ability of the downstream RL procedure to then filter its search space to the subset of policies that are optimal for
arXiv Detail & Related papers (2025-03-03T00:15:19Z) - The Efficiency vs. Accuracy Trade-off: Optimizing RAG-Enhanced LLM Recommender Systems Using Multi-Head Early Exit [46.37267466656765]
This paper presents an optimization framework that combines Retrieval-Augmented Generation (RAG) with an innovative multi-head early exit architecture.
Our experiments demonstrate how this architecture effectively decreases time without sacrificing the accuracy needed for reliable recommendation delivery.
arXiv Detail & Related papers (2025-01-04T03:26:46Z) - SPRec: Self-Play to Debias LLM-based Recommendation [23.875509546540904]
Large language models (LLMs) have attracted significant attention in recommendation systems.<n>We propose SPRec, a novel self-play framework designed to mitigate over-recommendation and improve fairness without requiring additional data or manual intervention.
arXiv Detail & Related papers (2024-12-12T12:53:30Z) - An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking [50.81324768683995]
FIRST is a novel approach that integrates a learning-to-rank objective and leveraging the logits of only the first generated token.
We extend the evaluation of FIRST to the TREC Deep Learning datasets (DL19-22), validating its robustness across diverse domains.
Our experiments confirm that fast reranking with single-token logits does not compromise out-of-domain reranking quality.
arXiv Detail & Related papers (2024-11-08T12:08:17Z) - A Critical Evaluation of AI Feedback for Aligning Large Language Models [60.42291111149438]
We show that simple supervised fine-tuning with GPT-4 as the teacher outperforms existing RLAIF pipelines.
More generally, we find that the gains from RLAIF vary substantially across base model families, test-time evaluation protocols, and critic models.
arXiv Detail & Related papers (2024-02-19T18:53:54Z) - RecDCL: Dual Contrastive Learning for Recommendation [65.6236784430981]
We propose a dual contrastive learning recommendation framework -- RecDCL.
In RecDCL, the FCL objective is designed to eliminate redundant solutions on user-item positive pairs.
The BCL objective is utilized to generate contrastive embeddings on output vectors for enhancing the robustness of the representations.
arXiv Detail & Related papers (2024-01-28T11:51:09Z) - Supervised Advantage Actor-Critic for Recommender Systems [76.7066594130961]
We propose negative sampling strategy for training the RL component and combine it with supervised sequential learning.
Based on sampled (negative) actions (items), we can calculate the "advantage" of a positive action over the average case.
We instantiate SNQN and SA2C with four state-of-the-art sequential recommendation models and conduct experiments on two real-world datasets.
arXiv Detail & Related papers (2021-11-05T12:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.