Open-set object detection: towards unified problem formulation and benchmarking
- URL: http://arxiv.org/abs/2411.05564v1
- Date: Fri, 08 Nov 2024 13:40:01 GMT
- Title: Open-set object detection: towards unified problem formulation and benchmarking
- Authors: Hejer Ammar, Nikita Kiselov, Guillaume Lapouge, Romaric Audigier,
- Abstract summary: We introduce two benchmarks: a unified VOC-COCO evaluation, and the new OpenImagesRoad benchmark which provides clear hierarchical object definition besides new evaluation metrics.
State-of-the-art methods are extensively evaluated on the proposed benchmarks.
This study provides a clear problem definition, ensures consistent evaluations, and draws new conclusions about effectiveness of OSOD strategies.
- Score: 2.4374097382908477
- License:
- Abstract: In real-world applications where confidence is key, like autonomous driving, the accurate detection and appropriate handling of classes differing from those used during training are crucial. Despite the proposal of various unknown object detection approaches, we have observed widespread inconsistencies among them regarding the datasets, metrics, and scenarios used, alongside a notable absence of a clear definition for unknown objects, which hampers meaningful evaluation. To counter these issues, we introduce two benchmarks: a unified VOC-COCO evaluation, and the new OpenImagesRoad benchmark which provides clear hierarchical object definition besides new evaluation metrics. Complementing the benchmark, we exploit recent self-supervised Vision Transformers performance, to improve pseudo-labeling-based OpenSet Object Detection (OSOD), through OW-DETR++. State-of-the-art methods are extensively evaluated on the proposed benchmarks. This study provides a clear problem definition, ensures consistent evaluations, and draws new conclusions about effectiveness of OSOD strategies.
Related papers
- Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks [17.520137576423593]
We aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR)
We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them.
We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR.
arXiv Detail & Related papers (2024-08-29T17:55:07Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - Open World Object Detection in the Era of Foundation Models [53.683963161370585]
We introduce a new benchmark that includes five real-world application-driven datasets.
We introduce a novel method, Foundation Object detection Model for the Open world, or FOMO, which identifies unknown objects based on their shared attributes with the base known objects.
arXiv Detail & Related papers (2023-12-10T03:56:06Z) - How to Evaluate the Generalization of Detection? A Benchmark for
Comprehensive Open-Vocabulary Detection [25.506346503624894]
We propose a new benchmark named OVDEval, which includes 9 sub-tasks and introduces evaluations on commonsense knowledge.
The dataset is meticulously created to provide hard negatives that challenge models' true understanding of visual and linguistic input.
arXiv Detail & Related papers (2023-08-25T04:54:32Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Towards Building Self-Aware Object Detectors via Reliable Uncertainty
Quantification and Calibration [17.461451218469062]
In this work, we introduce the Self-Aware Object Detection (SAOD) task.
The SAOD task respects and adheres to the challenges that object detectors face in safety-critical environments such as autonomous driving.
We extensively use our framework, which introduces novel metrics and large scale test datasets, to test numerous object detectors.
arXiv Detail & Related papers (2023-07-03T11:16:39Z) - Revisiting Open World Object Detection [39.49589782316664]
We find that the only previous OWOD work constructively puts forward the OWOD definition.
We propose five fundamental benchmark principles to guide the OWOD benchmark construction.
Our method outperforms other state-of-the-art object detection approaches in terms of both existing and our new metrics.
arXiv Detail & Related papers (2022-01-03T04:40:59Z) - OW-DETR: Open-world Detection Transformer [90.56239673123804]
We introduce a novel end-to-end transformer-based framework, OW-DETR, for open-world object detection.
OW-DETR comprises three dedicated components namely, attention-driven pseudo-labeling, novelty classification and objectness scoring.
Our model outperforms the recently introduced OWOD approach, ORE, with absolute gains ranging from 1.8% to 3.3% in terms of unknown recall.
arXiv Detail & Related papers (2021-12-02T18:58:30Z) - TISE: A Toolbox for Text-to-Image Synthesis Evaluation [9.092600296992925]
We conduct a study on state-of-the-art methods for single- and multi-object text-to-image synthesis.
We propose a common framework for evaluating these methods.
arXiv Detail & Related papers (2021-12-02T16:39:35Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.