Open-Set Object Detection By Aligning Known Class Representations
- URL: http://arxiv.org/abs/2412.20701v1
- Date: Mon, 30 Dec 2024 04:26:56 GMT
- Title: Open-Set Object Detection By Aligning Known Class Representations
- Authors: Hiran Sarkar, Vishal Chudasama, Naoyuki Onoe, Pankaj Wasnik, Vineeth N Balasubramanian,
- Abstract summary: Open-Set Object Detection (OSOD) has emerged as a contemporary research direction to address the detection of unknown objects.
We propose a new semantic clustering-based approach to facilitate a meaningful alignment of clusters in semantic space.
Our approach further incorporates an object focus module to predict objectness scores, which enhances the detection of unknown objects.
- Score: 24.708230848232432
- License:
- Abstract: Open-Set Object Detection (OSOD) has emerged as a contemporary research direction to address the detection of unknown objects. Recently, few works have achieved remarkable performance in the OSOD task by employing contrastive clustering to separate unknown classes. In contrast, we propose a new semantic clustering-based approach to facilitate a meaningful alignment of clusters in semantic space and introduce a class decorrelation module to enhance inter-cluster separation. Our approach further incorporates an object focus module to predict objectness scores, which enhances the detection of unknown objects. Further, we employ i) an evaluation technique that penalizes low-confidence outputs to mitigate the risk of misclassification of the unknown objects and ii) a new metric called HMP that combines known and unknown precision using harmonic mean. Our extensive experiments demonstrate that the proposed model achieves significant improvement on the MS-COCO & PASCAL VOC dataset for the OSOD task.
Related papers
- UN-DETR: Promoting Objectness Learning via Joint Supervision for Unknown Object Detection [6.837147490662261]
Unknown Object Detection (UOD) aims to identify objects of unseen categories, differing from the traditional detection paradigm limited by the closed-world assumption.
Previous methods obtain supervision signals for learning objectness in isolation from either localization or classification information, leading to poor performance for UOD.
We propose a transformer-based UOD framework, UN-DETR. Based on this, we craft Instance Presence Score (IPS) to represent the probability of an object's presence.
arXiv Detail & Related papers (2024-12-13T14:45:11Z) - Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.
Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.
We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - OSAD: Open-Set Aircraft Detection in SAR Images [1.1060425537315088]
Open-set detection aims to enable detectors trained on a closed set to detect all known objects and identify unknown objects in open-set environments.
To address these challenges, a novel open-set aircraft detector for SAR images is proposed, named Open-Set Aircraft Detection (OSAD)
It is equipped with three dedicated components: global context modeling (GCM), location quality-driven pseudo labeling generation (LPG), and prototype contrastive learning (PCL)
arXiv Detail & Related papers (2024-11-03T15:06:14Z) - An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training.
Previous research has focused on aligning sequences' visual and semantic spatial distributions.
We introduce a new loss function sampling method to obtain a tight and robust representation.
arXiv Detail & Related papers (2024-06-02T06:53:01Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Open-World Object Detection via Discriminative Class Prototype Learning [4.055884768256164]
Open-world object detection (OWOD) is a challenging problem that combines object detection with incremental learning and open-set learning.
We propose a novel and efficient OWOD solution from a prototype perspective, which we call OCPL: Open-world object detection via discnative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via
arXiv Detail & Related papers (2023-02-23T03:05:04Z) - Pseudo-IoU: Improving Label Assignment in Anchor-Free Object Detection [60.522877583407904]
Current anchor-free object detectors are quite simple and effective yet lack accurate label assignment methods.
We present Pseudo-Intersection-over-Union(Pseudo-IoU): a simple metric that brings more standardized and accurate assignment rule into anchor-free object detection frameworks.
Our method achieves comparable performance to other recent state-of-the-art anchor-free methods without bells and whistles.
arXiv Detail & Related papers (2021-04-29T02:48:47Z) - Distilling Knowledge from Refinement in Multiple Instance Detection
Networks [0.0]
Weakly supervised object detection (WSOD) aims to tackle the object detection problem using only labeled image categories as supervision.
We present an adaptive supervision aggregation function that dynamically changes the aggregation criteria for selecting boxes related to one of the ground-truth classes, background, or even ignored during the generation of each refinement module supervision.
arXiv Detail & Related papers (2020-04-23T02:49:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.