論文の概要: Towards a Real-Time Simulation of Elastoplastic Deformation Using Multi-Task Neural Networks
- arxiv url: http://arxiv.org/abs/2411.05575v1
- Date: Fri, 08 Nov 2024 14:04:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:53:39.180212
- Title: Towards a Real-Time Simulation of Elastoplastic Deformation Using Multi-Task Neural Networks
- Title(参考訳): マルチタスクニューラルネットワークを用いた弾塑性変形のリアルタイムシミュレーションに向けて
- Authors: Ruben Schmeitz, Joris Remmers, Olga Mula, Olaf van der Sluis,
- Abstract要約: 本研究では, 適切な分解, 長期記憶ネットワーク, マルチタスク学習を組み合わせ, 弾塑性変形をリアルタイムで正確に予測するサロゲート・モデリング・フレームワークを提案する。
このフレームワークは、様々な状態変数に対して0.40%未満の平均絶対誤差を達成する。
我々の場合、事前訓練されたマルチタスクモデルでは、20のサンプルしか持たない追加変数を効果的にトレーニングすることができ、複雑なシナリオの深い理解を示すことができます。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study introduces a surrogate modeling framework merging proper orthogonal decomposition, long short-term memory networks, and multi-task learning, to accurately predict elastoplastic deformations in real-time. Superior to single-task neural networks, this approach achieves a mean absolute error below 0.40\% across various state variables, with the multi-task model showing enhanced generalization by mitigating overfitting through shared layers. Moreover, in our use cases, a pre-trained multi-task model can effectively train additional variables with as few as 20 samples, demonstrating its deep understanding of complex scenarios. This is notably efficient compared to single-task models, which typically require around 100 samples. Significantly faster than traditional finite element analysis, our model accelerates computations by approximately a million times, making it a substantial advancement for real-time predictive modeling in engineering applications. While it necessitates further testing on more intricate models, this framework shows substantial promise in elevating both efficiency and accuracy in engineering applications, particularly for real-time scenarios.
- Abstract(参考訳): 本研究では, 適切な直交分解, 長期記憶ネットワーク, マルチタスク学習を組み合わせ, 弾塑性変形をリアルタイムで正確に予測するサロゲート・モデリング・フレームワークを提案する。
マルチタスクモデルでは,共有層によるオーバーフィッティングの軽減による一般化の強化を図り,各状態変数の0.40\%未満の平均絶対誤差を実現する。
さらに, 実例では, 事前学習したマルチタスクモデルにより, 20サンプル未満の変数を効果的に学習し, 複雑なシナリオの理解を深めることができる。
これは、通常100個のサンプルを必要とするシングルタスクモデルと比較して、特に効率的である。
従来の有限要素解析よりも顕著に高速に計算を約100万回高速化し,工学的応用におけるリアルタイム予測モデリングの大幅な進歩をもたらす。
より複雑なモデルでさらにテストする必要があるが、このフレームワークは、特にリアルタイムシナリオにおいて、エンジニアリングアプリケーションの効率性と精度を向上する上で、かなり有望であることを示している。
関連論文リスト
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
別個のニューラルネットワーク(すなわち値ネットワーク)を用いた後学習におけるロジットレベルのモデリング変更を提案する。
このネットワークをデモを使って小さなベースモデルでトレーニングした後、推論中に他のトレーニング済みモデルとシームレスに統合することができる。
得られた値ネットワークは、パラメータサイズの異なる事前学習されたモデル間で広い転送性を有することを示す。
論文 参考訳(メタデータ) (2024-10-28T13:48:43Z) - Latent variable model for high-dimensional point process with structured missingness [4.451479907610764]
縦断データは医療、社会学、地震学など多くの分野で重要である。
実世界のデータセットは高次元であり、構造化された欠陥パターンを含み、測定時間ポイントは未知のプロセスによって管理される。
これらの制限に対処可能な、柔軟で効率的な潜在変数モデルを提案する。
論文 参考訳(メタデータ) (2024-02-08T15:41:48Z) - Improving Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architectures [12.703947839247693]
拡散モデルは強力な深層生成ツールとして登場し、様々な応用に優れている。
しかし、その顕著な生成性能は、遅いトレーニングとサンプリングによって妨げられている。
これは、広範囲の前方および逆拡散軌道を追跡する必要があるためである。
本稿では,これらの課題に対処するための経験的知見から着想を得た多段階フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T17:48:09Z) - Learning to Simulate: Generative Metamodeling via Quantile Regression [2.2518304637809714]
我々は「シミュレーターの高速シミュレータ」を構築することを目的とした、生成メタモデリングと呼ばれる新しいメタモデリング概念を提案する。
一度構築すると、生成メタモデルは入力が特定されるとすぐに大量のランダム出力を生成することができる。
本稿では,QRGMM(quantile-regression-based generative metamodeling)という新しいアルゴリズムを提案し,その収束率と収束率について検討する。
論文 参考訳(メタデータ) (2023-11-29T16:46:24Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Multi-fidelity surrogate modeling using long short-term memory networks [0.0]
パラメタライズされた時間依存問題に対する多要素代理モデリングの新しいデータ駆動フレームワークを提案する。
提案した多要素LSTMネットワークは, シングルフィデリティ回帰を著しく向上するだけでなく, フィードフォワードニューラルネットワークに基づくマルチフィデリティモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-08-05T12:05:02Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Balancing Accuracy and Latency in Multipath Neural Networks [0.09668407688201358]
我々は,一発のニューラルネットワーク探索モデルを用いて,難解な数のニューラルネットワークの性能を暗黙的に評価する。
本手法は,待ち時間が異なるモデル間の相対性能を正確にモデル化し,異なるデータセットをまたいだ精度で未検出モデルの性能を予測できることを示す。
論文 参考訳(メタデータ) (2021-04-25T00:05:48Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。