論文の概要: Visual-TCAV: Concept-based Attribution and Saliency Maps for Post-hoc Explainability in Image Classification
- arxiv url: http://arxiv.org/abs/2411.05698v1
- Date: Fri, 08 Nov 2024 16:52:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:59.188883
- Title: Visual-TCAV: Concept-based Attribution and Saliency Maps for Post-hoc Explainability in Image Classification
- Title(参考訳): Visual-TCAV:画像分類におけるポストホック説明可能性のための概念に基づく属性とサリエンシマップ
- Authors: Antonio De Santis, Riccardo Campi, Matteo Bianchi, Marco Brambilla,
- Abstract要約: 近年,畳み込みニューラルネットワーク(CNN)のパフォーマンスが大幅に向上している。
しかし、そのサイズと複雑さのため、ブラックボックスとして機能し、透明性の懸念につながります。
本稿では,これらの手法間のギャップを埋めることを目的とした,ポストホックな説明可能性フレームワークであるVisual-TCAVを紹介する。
- 参考スコア(独自算出の注目度): 3.9626211140865464
- License:
- Abstract: Convolutional Neural Networks (CNNs) have seen significant performance improvements in recent years. However, due to their size and complexity, they function as black-boxes, leading to transparency concerns. State-of-the-art saliency methods generate local explanations that highlight the area in the input image where a class is identified but cannot explain how a concept of interest contributes to the prediction, which is essential for bias mitigation. On the other hand, concept-based methods, such as TCAV (Testing with Concept Activation Vectors), provide insights into how sensitive is the network to a concept, but cannot compute its attribution in a specific prediction nor show its location within the input image. This paper introduces a novel post-hoc explainability framework, Visual-TCAV, which aims to bridge the gap between these methods by providing both local and global explanations for CNN-based image classification. Visual-TCAV uses Concept Activation Vectors (CAVs) to generate saliency maps that show where concepts are recognized by the network. Moreover, it can estimate the attribution of these concepts to the output of any class using a generalization of Integrated Gradients. This framework is evaluated on popular CNN architectures, with its validity further confirmed via experiments where ground truth for explanations is known, and a comparison with TCAV. Our code will be made available soon.
- Abstract(参考訳): 近年,畳み込みニューラルネットワーク(CNN)のパフォーマンスが大幅に向上している。
しかし、そのサイズと複雑さのため、ブラックボックスとして機能し、透明性の懸念につながります。
State-of-the-the-art saliency Methodは、クラスが特定される入力画像の領域を強調する局所的な説明を生成するが、関心の概念がバイアス軽減に不可欠な予測にどのように貢献するかを説明することはできない。
一方、TCAV(Testing with Concept Activation Vectors)のような概念ベースの手法は、概念に対するネットワークの感度に関する洞察を提供するが、特定の予測においてその属性を計算することはできない。
本稿では,CNNに基づく画像分類のための局所的・グローバル的説明を提供することにより,これらの手法間のギャップを埋めることを目的とした,ポストホックな説明可能性フレームワークであるVisual-TCAVを紹介する。
Visual-TCAVはコンセプトアクティベーションベクトル (Concept Activation Vectors, CAV) を使用して、ネットワークによって概念がどこに認識されているかを示す唾液マップを生成する。
さらに、積分勾配の一般化を用いて、これらの概念の任意のクラスの出力に対する属性を推定することができる。
このフレームワークは、一般的なCNNアーキテクチャで評価されており、その妥当性は、説明のための基礎的真理が知られている実験や、TCAVとの比較を通じてさらに確認されている。
私たちのコードはまもなく利用可能になります。
関連論文リスト
- Exploiting Text-Image Latent Spaces for the Description of Visual Concepts [13.287533148600248]
コンセプトアクティベーションベクトル(Concept Activation Vectors, CAV)は、人間のフレンドリな概念をモデルの内部的特徴抽出プロセスにリンクすることで、ニューラルネットワークの意思決定に関する洞察を提供する。
新しいCAVが発見されたとき、それらは人間の理解可能な記述に翻訳されなければならない。
本稿では,新たに発見された概念集合の解釈を支援するために,各CAVに対してテキスト記述を提案する。
論文 参考訳(メタデータ) (2024-10-23T12:51:07Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Local Concept Embeddings for Analysis of Concept Distributions in DNN Feature Spaces [1.0923877073891446]
我々はディープニューラルネットワーク(DNN)のための新しい概念分析フレームワークを提案する。
完全なデータセット上で単一のグローバルな概念ベクトルを最適化する代わりに、個々のサンプルに対してローカルな概念埋め込み(LoCE)ベクトルを生成する。
文脈感度にもかかわらず,提案手法のセグメンテーション性能はグローバルベースラインと競合する。
論文 参考訳(メタデータ) (2023-11-24T12:22:00Z) - Concept Activation Regions: A Generalized Framework For Concept-Based
Explanations [95.94432031144716]
既存の手法では、概念を説明する例は、ディープニューラルネットワークの潜伏空間の一定の方向にマッピングされていると仮定している。
そこで本研究では,DNNの潜在空間において,異なるクラスタに分散した概念例を提案する。
この概念活性化領域(CAR)は、グローバルな概念に基づく説明と局所的な概念に基づく特徴の重要性をもたらす。
論文 参考訳(メタデータ) (2022-09-22T17:59:03Z) - Visual Recognition with Deep Nearest Centroids [57.35144702563746]
我々は、概念的にエレガントで驚くほど効果的な大規模視覚認識ネットワークである深部セントロイド(DNC)を考案した。
パラメトリックと比較すると、DNCは画像分類(CIFAR-10, ImageNet)に優れ、画像認識(ADE20K, Cityscapes)を大いに起動する。
論文 参考訳(メタデータ) (2022-09-15T15:47:31Z) - Shap-CAM: Visual Explanations for Convolutional Neural Networks based on
Shapley Value [86.69600830581912]
クラスアクティベーションマッピングに基づくShap-CAMと呼ばれる新しい視覚的説明法を開発した。
我々は,Shap-CAMが意思決定プロセスの解釈において,より良い視覚的性能と公平性を実現することを実証した。
論文 参考訳(メタデータ) (2022-08-07T00:59:23Z) - Exploring Concept Contribution Spatially: Hidden Layer Interpretation
with Spatial Activation Concept Vector [5.873416857161077]
コンセプトアクティベーションベクトル(TCAV)を使用したテストは、クエリ概念のターゲットクラスへのコントリビューションを定量化する強力なツールを提供する。
対象物が領域のごく一部しか占有していない画像の場合、TCAV評価は冗長な背景特徴によって妨害される可能性がある。
論文 参考訳(メタデータ) (2022-05-21T15:58:57Z) - ADVISE: ADaptive Feature Relevance and VISual Explanations for
Convolutional Neural Networks [0.745554610293091]
本稿では,機能マップの各ユニットの関連性を定量化し,活用して視覚的説明を提供する新しい説明可能性手法であるADVISEを紹介する。
我々は、画像分類タスクにおいて、AlexNet、VGG16、ResNet50、XceptionをImageNetで事前訓練した上で、我々のアイデアを広く評価する。
さらに,ADVISEは衛生チェックをパスしながら,感度および実装独立性公理を満たすことを示す。
論文 参考訳(メタデータ) (2022-03-02T18:16:57Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
バックプロパゲーション画像のサリエンシは、入力中の個々のピクセルのモデル中心の重要性を推定することにより、モデル予測を説明することを目的としている。
CAMERASは、外部の事前処理を必要とせずに、高忠実度バックプロパゲーション・サリエンシ・マップを計算できる手法である。
論文 参考訳(メタデータ) (2021-06-20T08:20:56Z) - MACE: Model Agnostic Concept Extractor for Explaining Image
Classification Networks [10.06397994266945]
MACE: Model Agnostic Concept Extractorを提案し、より小さな概念を通じて畳み込みネットワークの動作を説明する。
VGG16やResNet50 CNNアーキテクチャ、Animals With Attributes 2(AWA2)やPlaces365といったデータセットを使って、私たちのフレームワークを検証する。
論文 参考訳(メタデータ) (2020-11-03T04:40:49Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。